PROGRAM OF THE

10
 th
 INTERNATIONAL MODELICA CONFERENCE

March 10-12, 2014 Lund, Sweden www.modelica.org

EDITORS: HUBERTUS TUMMESCHEIT AND KARL-ERIK ÅRZÉN

Program of the 10th International Modelica Conference
Lund, Sweden, March 10-12, 2014

EDITORS:

Dr. Hubertus Tummescheit and Prof. Karl-Erik Årzén

ORGANIZED BY:

Modelica Association Modelon AB
c/o PELAB, Linköpings Univ.
SE-581 83 Linköping IDEON Science Park

Sweden

CONFERENCE LOCATION:

Lund University
Matematikcentrum/Matteannexet
(Center for Mathematical Sciences)
Sölvegatan 20A, SE-223 62 LUND
SWEDEN

WELCOME

The 10th International Modelica Conference is the main event for our community. Users, library developers, tool vendors and language designers will gather to share their knowledge and learn about the latest scientific and industrial progress related to Modelica and FMI (Functional Mockup Interface).

This 10th milestone conference returns to Lund, where the first event took place in 2000. Since then, Modelica has matured from an idea among a small number of dedicated enthusiasts to a widely accepted standard language for the modeling and simulation of cyber-physical systems. Modelica is now used in many industries including automotive, energy and process, aerospace, and industrial equipment. Modelica has even been tapped for one-of-a-kind systems engineering designs such as the ESS (European Spallation Source) which is currently being built nearby in Lund. Modelica is the language of choice for modeling and simulation of complex system interactions.

The addition of the FMI standard to the project portfolio under the stewardship of the Modelica Association has greatly strengthened Modelica. FMI provides a complementary standard that enables deployment of high quality models to a larger number of engineers working with system design and verification.

CONFERENCE HIGHLIGHTS:

- 2 Keynote speeches
- 114 papers in 5 parallel tracks
- 23 posters
- 6 tutorials
- 5 libraries for the Modelica Library Award
- 6 vendor sessions presenting the latest Modelica and FMI tools
- A fully booked exhibition area featuring 18 exhibitors
- Electronic proceedings including all papers and some associated Modelica libraries and models

The conference also presents new initiatives from the Modelica Association. Since the last conference, there has been a major effort to improve the standards compliance process for the Modelica language, the Modelica Libraries developed by the Modelica association and the FMI standard.

- The latest Modelica Standard Library release (MSL 3.2.1) has been enhanced and modified to be fully compliant with the Modelica Language Standards version 3.2 rev2, and is now solely based on open source code under the Modelica License version 2.0.
- MSL 3.2.1 has also been improved to significantly simplify comparisons of simulations of the same model across multiple Modelica environments. Tools to support such comparisons are now available through the Modelica Association.
- The Modelica language version 3.2rev 2 fixed many ambiguities in the specification.
- A Modelica Compliance Test Library has been carefully designed and implemented to verify that a Modelica tool is compliant to the Modelica specification. It has been tested with many tools, with agreed-upon reference results.

■ A set of FMI Cross Check Rules was established in July 2013 and has been used by many vendors to verify tool quality and interoperability. All results are publically presented in a dynamic, online and tabular reference.

These combined efforts have helped to increase the industrial acceptance, commitment to, and use of Modelica and FMI as central standards for analytic model based systems engineering.

Finally, we want to acknowledge the support we received from the program board and program committee. Special thanks to this year's organizers, the Modelica Association, Modelon AB, and Amelie Rönngård from Anagram. Last but not least, let us thank all authors for their contributions to this conference.

We wish all participants an enjoyable and successful conference.

West Hartford and Lund, February 10th 2014 Hubertus Tummescheit and Karl-Erik Årzén

Hubertus Tummescheit

Karl-Erik Årzén

CONTENTS

KEYNOTE SPEAKERS 5
GENERAL SCHEDULE 6
SCIENTIFIC PROGRAM 7
POSTER PRESENTATION 13
TUTORIALS 14
VENDOR SESSIONS 16
EXHIBITION 16
PRACTICAL INFORMATION 17
SOCIAL PROGRAM 18

KEYNOTE SPEAKERS

Dr. Hilding Elmqvist

CTO Systems, Dassault Systèmes

EImqvist's Ph.D. thesis in 1978 from the Department of Automatic Control, Lund Institute of Technology contains the design of a novel object-oriented and equation based modelling language, Dymola, and algorithms for symbolic model manipulation.

Elmqvist spent one year in 1978-1979 at the Computer Science Department at Stanford University, California. His research continued in 1979-1984 on languages for implementation of control systems (LICS). Elmqvist was in 1984-1990 the principal designer and project manager at a subsidiary to Alfa-Laval called SattControl in Malmö for developing SattLine, a graphical, object-oriented and distributed control system. In 1990-1992, he worked for Alfa-Laval in Toronto.

In 1992, Elmqvist founded Dynasim AB (in 2006 acquired by Dassault Systèmes) and in 1996 he initiated the international effort to design the next generation object-oriented language for physical modelling, Modelica.

Elmqvist is Chief Technology Officer for Systems and the chief architect of the Multi-Engineering Modelling and Simulation software for Modelica used in the Dymola Product Line and 3DEXPERIENCE platform. He is also responsible for Technology within the board of Modelica Association.

Clas A. Jacobson, Ph.D.
Chief Scientist,
United Technologies Systems
\& Controls Engineering

解

Dr. Jacobson is Chief Scientist for the United Technologies Systems \& Controls Engineering (UTSCE) organization. In this role he works with the UTC business units to ensure capability in systems engineering and controls is available for product development.

Prior to his role as Chief Scientist for UTSCE he worked as the Chief Scientist, Controls for UTC and before that at the United Technologies Research Center (UTRC) in management and technical positions since 1995. He has held positions at UTRC as Director of the Carrier Program Office responsible for creating and managing projects in a stage gate project planning and execution process and also Director of the Systems Department at UTRC responsible for capability in the areas of systems engineering.

Dr. Jacobson received his Ph.D degree in electrical engineering in 1986 from Rensselaer Polytechnic Institute. He was an Associate Professor at Northeastern University in Boston from 1986-1995.

GENERAL SCHEDULE

GENERAL SCHEDULE OF MONDAY, MARCH 10

Venue: Matteannexet						
Common area	MA1	MA2	MA3	MA4	MA5	MA6
	Tutorials					
Welcome Reception						

GENERAL SCHEDULE OF TUESDAY, MARCH 11

| $9: 00$ | Opening Session, Venue: Aulan, Kårhuset |
| :---: | :---: | :---: |
| $9: 10$ | Modelica News |
| $9: 25$ | Keynote 1 Dr. Hilding Elmquist |

	Venue: Matteannexet						
	Common area	MA1	MA2	MA3	MA4	MA5	MA6
10:10	Coffee break						
10:40	Exhibition	FMI 1	Automotive Applications 1	Building Energy Applications 1	Electro-Magnetic Models and Libraries 1	Modelica Language \& Compiler Implementation	
12:00	Lunch						
13:20	Exhibition	FMI 2	Automotive Applications 2	Building Energy Applications 2	Electro-Magnetic Models and Libraries 2	Modelica Tools 1	
14:40	Coffee break						
15:10	Exhibition	Automotive Applications: FMI \& HIL	Fault Handling and Safety Issues in Modelica	Novel Modelica Applications and Libraries	Electrical Power Systems	Modelica Tools 2	
16:30	Coffee break						
17:00		Modelon VS	LMS VS	ITI VS	Maplesoft VS	OSMC VS	Dassault VS
19:00			Confere	ce Dinner, Venue:	Castle		

GENERAL SCHEDULE OF WEDNESDAY, MARCH 12

8:30		Keynote 2, Dr. Clas A. Jacobson Venue: Aulan, Kårhuset					
9:15							
	Venue: Matteannexet						
	Common area	MA1	MA2	MA3	MA4	MA5	MA6
9:30	Exhibition	Aerospace 1 Applications	Industrial Equipment	Control Applications	Thermofluid, Systems Models and Libraries 1	Hybrid Systems	
10:30	Coffee break						
11:00	Exhibition	Aerospace Applications 2	Power, Energy \& Process Applications 1	Numerical Aspects of Modelica Tools	Thermofluid Systems, Modeles \& Libraries 2	Modelica Tools 3	
12:20	Lunch						
13:20			Poster	ssion, Venue: Mattean	nnexet basement		
14:00	Exhibition	Mechanical Systems	Power, Energy \& Process Applications 2	Optimization Applications and Methods	Thermal Power Processes	Web-related Modelica Tools	
15:20	Coffee break						
15:50		Final Assembly, Venue: Aulan, Kårhuset					
		Library Awards					
16:10		Closing session					

[^0]

	Venue: Matteannexet	
MA1	MA2	MA3

Implementing stabilized co-simulation of strongly coupled systems using the Functional Mock-up Interface 2.0
Antoine Viel

FMI 2

Chair: Bernard Dion

Automotive Applications 2

Chair: Mike Dempsey

Building Energy Applications 2

Chair: Rui Gao

MA4
MA5

Transmission Modeling in Modelica:

 A consistent approach for several software development platformsJochen Köhler, Michael Kuebler
and Julian King

Context-based polynomial extrapolation and slackened synchronization for fast multi-core simulation using FMI

Abir Ben Khaled, Laurent Duval,
Mongi Ben Gaid and Daniel Simon

Model-Based Integration Platform for FMI Co-Simulation and Heterogeneous Simulations of Cyber-Physical Systems

Himanshu Neema, Jesse Gohl, Zsolt Lattmann, Janos Sztipanovits, Gabor Karsai, Sandeep Neema, Ted Bapty, John Batteh, Hubertus Tummescheit and Chandrasekar Sureshkumar

Adapting Functional Mockup Units for HLA-compliant Distributed Simulation
Faruk Yilmaz, Umut Durak, Koray Taylan and Halit Oğüztüzün

Modelling and parameter identification of a semi-active vehicle damper

Michael Fleps-Dezasse, Jakub Tobolar and Johannes Pitzer

Coupling occupant behaviour with

 a building energy model-A FMI applicationGilles Plessis, Edouard Amouroux and Yvon Haradji

Electro-Magnetic Models

 and Libraries 2Chair: Anton Haumer

Modelica Tools 1

Chair: Johan Åkesson

The Modelica HouseModels Library:	Phenomenological Li-ion battery			
Presentation and Evaluation of				
a Room Model with the ASHRAE		\quad	Standard 140	
:---	:---			
Ana Constantin, Rita Streblow and Dirk Müllert	Kotub Uddin and Alessandro Picarelli			

Verification and Design Exploration through Meta Tool Integration with OpenModelica

Zsolt Lattmann, Adrian Pop, Johan De Kleer, Peter Fritzson, Bill Janssen, Sandeep Neema, Ted Bapty, Xenofon Kout soukos, Matthew Klenk, Daniel Bobrow, Bhaskar Saha and Tolga Kurtoglu

Parallel Model Execution on Many Cores

Hilding Elmqvist, Sven Erik Mattsson and Hans Olsson

A toolchain for Rapid Control Prototyping using Rexroth controllers and open source software

Nils Menager, Niklas Worschech and Lars Mikelsons

Modular Multi-Rate and Multi-Method Real-Time Simulation

Bernhard Thiele, Martin Otter and Sven Erik Mattsson

Venue: Aulan, Kårhuset

Venue: Matteannexet				
MA1	MA2	MA3	MA4	MA5

Aerospace Applications 1

Chair: Michael Sielemann
Industrial Equipment
Chair: Michael Tiller

Control Applications

Chair: Maria Henningsson

Thermofluid Systems,
 Models and Libraries 1

Chair: Wilhelm Tegethoff

Hybrid Systems

Chair: Hans Olsson

09:30
Nonlinear inverse models for the control of satellites with flexible structures
Matthias Reiner and Johann Bals

Model-Based Energy Recuperation of Multi-Axis Machines

Tamas Juhasz, Matthias Kennel, Marco Franke and Ulrich Schmucker

Exploiting Actuator Limits with Feedforward Control based on Inverse Models

Manuel Gräber

An FMI-based Framework for

 State and Parameter EstimationMarco Bonvini, Michael Wetter and Michael D. Sohn

A Modelica Library for Scalable Modelling of Aircraft Environmental Control Systems

Philip Jordan and Gerhard Schmitz

Physical Design of Hydraulic Valves in Modelica

Chandrasekar Sureshkumar and Hubertus Tummescheit

Grey-box Building Models for Model Order Reduction and Control

Roel De Coninck, Fredrik Magnusson, Johan Åkesson and Lieve Helsen

Interfacing Models for Thermal Separation Processes with Fluid Property Data from External Sources
Kai Wellner, Carsten Trapp, Gerhard Schmitz and Francesco Casella

An Operational Semantics for Hybrid Systems Involving Behavioral Abstraction
Simon Bliudze and Sébastien Furic

An example of beneficial use of variable-structure modeling to enhance an existing rocket model

Alexandra Mehlhase, Daniel Gomez Esperon, Julien Bergmann and Marcel Merkle
son, Erik Åberg, Erik Osvaldsson, Gregor Dolanc, Bostjan Pregelj, Jonas Eborn and Jens Pålsson

ThermoCycle: A Modelica library for the simulation of thermodynamic systems

Sylvain Quoilin, Adriano Desideri, Jorrit Wronski, lan Bell and Vincent Lemort

Efficient Monte Carlo simulation of stochastic hybrid systems

Marc Bouissou, Hilding Elmqvist, Martin Otter and Albert Benveniste

Venue: Matteannexet Basement

Poster Session, See list of posters

Venue: Matteannexet				
MA1	MA2	MA3	MA4	MA5

	Mechanical Systems Chair: Johannes Gerl	Power, Energy \& Process Applications 2 Chair: Michael Sasena	Optimization Applications and Methods Chair: Stéphane Velut	Thermal Power Processes	Web-related Modelica Tools
14:00	Modelling elastomer buffers with DyMoRail	Short-term production planning for district heating networks with JModelica.org	Modified Multiple Shooting Combined with Collocation Method in JModelica.org with Symbolic Calculations	Modelling a Lignite Power Plant in Modelica to Evaluate the Effects of Dynamic Operation and Offering Grid Services	Vehicle Thermal Management - A Case Study in Web-Based Engineering Analysis
	Elisabeth Dumont and Werner Maurer	Stéphane Velut, Per Ola Larsson, Linn Saarinen, Katarina Boman and Johan Windahl	Evgeny Lazutkin, Abebe Geletu, Siegbert Hopfgarten and Pu Li	Moritz Huebel, Sebastian Meinke and André Berndt	Michael Tiller
14:20	A Modelica Contact Library for Idealized Simulation of Independently Defined Contact Surfaces	Modelling the system dynamics of islanding asynchronous generators	DOML - a Compiler Environment for Dynamic Optimization Supporting Multiple Solvers	Use of External Fluid Property Code in Modelica for Modelling of a Pre-combustion CO2 Capture Process Involving Multi-Component, Two-Phase Fluids	recon - Web and network friendly simulation data formats
	Felix Oestersötebier, Peng Wang and Ansgar Trächtler	Dietmar Winkler and Håkon Molland Edvardsen	Tomasz Tarnawski and Radosław Pytlak	Carsten Trapp, Francesco Casella, Teus van der Stelt and Piero Colonna	Michael Tiller and Peter Harman
14:40	The OneWind Modelica Library for Wind Turbine Simulation with Flexible Structure - Modal Reduction Method in Modelica	Hybrid Energy System Modeling in Modelica	Efficient Implementation of Collocation Methods for Optimization using OpenModelica and ADOL-C	Dynamic modelling of a parabolic trough solar power plant	IDOS - (also) a Web Based Tool for Calibrating Modelica Models
	Philipp Thomas, Xin Gu, Roland Samlaus, Claudio Hillmann and Urs Wihlfahrt	William Binder, Christiaan Paredis and Humberto Garcia	Vitalij Ruge, Willi Braun, Bernhard Bachmann, Andrea Walther and Kshitij Kulshreshtha	Robert Österholm and Jens Pålsson	Radosław Pytlak and Tomasz Tarnawski
15:00	Simulating Collisions within the Modelica MultiBody library	Dynamic Modeling of Small Modular Nuclear Reactors using MoDSim	Symbolic Transformations of Dynamic Optimization Problems	Testing Power Plant Control Systems in Modelica	Client-side Modelica powered by Python or Java Script
	Andreas Hofmann, Lars Mikelsons, Ines Gubsch and Christian Schubert	Richard Hale, Sacit Cetiner, David Fugate, Lou Qualls, John Batteh and Michael Tiller	Fredrik Magnusson, Karl Berntorp, Björn Olofsson and Johan Åkesson	Kilian Link, Leo Gall, Julien Bonifay and Matthias Buggert	Rüdiger Franke

Venue: Aulan, Kårhuset

POSTER SESSIONS

Wednesday 13.00-14.00 there will be poster sessions held downstairs from the Exhibition and Session hall entrances.

Dynamic modelling of a Condenser with the ThermoSysPro Library

Baligh El Hefni and Daniel Bouskela

Model-based Verification and Optimization of Batteries for Mobile Power Applications

Marco Franke, Tamas Juhasz and Ulrich Schmucker

Wavelet Library for Modelica

Jianbo Gao, Yang Ji, Johann Bals and Ralph Kennel

A Modelica Power System

 Component Library for ModelValidation and Parameter Identification

Luigi Vanfretti, Tetiana Bogodorova and Maxime Baudette

Control and Characteristic Map

Generation of Permanent Magnet Synchronous Machines and Induction Machines with Squirrel Cage

Marco Keßler, Markus Andres and Thomas Schmitt

BuildSysPro: a Modelica library for modelling buildings and energy systems

Gilles Plessis, Aurelie Kaemmerlen and Amy Lindsay

Efficient Numerical Integration of Dynamical Systems based on Structural-Algebraic Regularization avoiding State Selection

Lena Scholz and Andreas Steinbrecher

Symbolic Initialization of Over-determined Higher-index Models

Lennart Ochel, Bernhard Bachmann and Francesco Casella

Proposal for standardization of Heat Transfer Modelling in NewThermal Library

Susana López Pérez
and Itzal Del Hoyo Arce

Systems Physics Library
Werner Maurer and
Elisabeth Dumont

Modelica Model for the youBot Manipulator

Rhama Dwiputra, Alexey
Zakharov, Roustiam Chakirov and Erwin Prassler

Equation based parallelization of Modelica models

Marcus Walther, Volker
Waurich, Christian Schubert and Ines Gubsch

Simulation of 2-dimensional flows in Modelica with the Casacaded Digital Lattice Boltzmann Method

Thomas Baeuml and Helmut Kühnelt

FORM-L: A MODELICA

Extension for Properties
Modelling Illustrated on
a Practical Example
Thuy Nguyen

Integration of OpenModelica

 in Ptolemy IIMana Mirzaei,
Lena Rogovchenko-Buffoni and Peter Fritzson

Extending JGrafchart
with Support for FMI for Co-Simulation

Alfred Theorin and Charlotta Johnsson

Implementation of the Omni Vehicle Dynamics on Modelica

> Ivan Kosenko

A Medium Model for the

 Refrigerant Propane for Fast and Accurate Dynamic SimulationsRoozbeh Sangi, Pooyan Jahangiri, Freerk Klasing, Rita Streblow and Dirk Müller

Consistent Simulation
 Environment with FMI based Tool Chain

Edo Drenth, Mikael Törmänen, Krister Johansson, Bengt-Arne Andersson, Daniel Andersson, Ivar Torstensson and Johan Åkesson

A MATLAB to Modelica Translator
Mohammad Jahanzeb, Arunkumar Palanisamy, Martin Sjölund and Peter Fritzson

Setting up a framework for model predictive control with moving horizon state estimation using JModelica
Mats Vande Cavey, Roel De Coninck and Lieve Helsen

Development of Custom

 Workflows for Simulation and Analysis of Functional Mock-up UnitsChandrasekar Sureshkumar and Jesse Gohl

Statecharts as a Means to Control Plant Models in LMS Imagine.Lab AMESim

Sébastien Furic, Loïc Wagner and Vincent Berthoux

The tutorials are free of charge, and will be held held at Matteannexet Monday, March 10th, 14:00-17:45. Coffee break is included.

Simulation and Optimization with JModelica.org and CasADi

Abstract

Modelon AB, Johan Åkesson (contact) and the JModelica.org team), Lund Center for Control of Complex Engineering Systems (LCCC) (Fredrik Magnusson) and Joel Andersson, developer of CasADi.

Optimization of non-linear dynamic systems is gaining increased industrial adoption. Key applications include trajectory optimization, Model Predictive Control (MPC), model calibration, state estimation, and design/sizing problems. This tutorial is based on a novel interactive tool-chain which combines the expressiveness and user-friendliness of Modelica and the optimization extension Optimica, with the speed, flexibility and robustness of a modern computational framework dedicated to optimization. Several hands on exercises are offered to demonstrate the capabilities of the new tool-chain, including parameter estimation, trajectory optimization and MPC. Two common methods, collocation and multiple shooting, will be used to solve dynamic optimization problems. In addition, simulation of Modelica models using Python scripting will be demonstrated. Pitfalls and challenges encountered in dynamic optimization of industrial processes are high-lighted. The tutorial is based on the open source software JModelica.org, PyFMI/Assimulo and CasADi.

Introduction to Modeling, Simulation, Debugging, and Optimization with Modelica using OpenModelica

Peter Fritzson, Lena Buffoni, Martin Sjölund, Linköpping University, Sweden and Bernhard Bachmann, Fachhochschule Bielefeld, Germany

Object-Oriented modeling is a fast-growing area of modeling and simulation that provides a structured, computersupported way of doing mathematical and equation-based modeling. Modelica is today the most promising modeling and simulation language in that it effectively unifies and generalizes previous object-oriented modeling languages and provides a sound basis for the basic concepts. The Modelica modeling language is bringing about a revolution in this area, based on its ease of use, visual design of mod-
els with combination of lego-like predefined model building blocks, its ability to define model libraries with reusable components, its support for modeling and simulation of complex applications involving parts from several application domains, and many more useful facilities.

The tutorial presents an object-oriented componentbased approach to computer supported mathematical modeling and simulation through the powerful Modelica language and its associated technology. Modelica can be viewed as an almost universal approach to high level computational modeling and simulation.

The tutorial gives an introduction to the Modelica language to people who are familiar with basic programming concepts. It gives a basic introduction to the concepts of modeling and simulation, as well as the basics of objectoriented component-based modeling for the novice, and an overview of modeling and simulation in a number of application areas. The OpenModelica environment with its graphical user interface and scripting will be used for hands-on exercises.

Moreover, in parallel, for those who already know Modelica, a session on debugging of equation-based models will be given, as well as a short introduction to dynamic optimization (collocation/multiple shooting) with OpenModelica.

Modeling and Simulation of Electrical Drives

[^1]the structure of the basic components (machine, power electronics, sensors, control) will be given. An introduction to space phasors used in field oriented control is given, followed by an outline of the basics of controlling permanent magnet synchronous machines.

The torque controlled drive models of a permanent magnet synchronous machine are presented. For these drive types the differences between different combinations of inverter and machine models will be compared:

- quasi static inverter + quasi static machine
- averaging inverter + transient machine
- switching inverter + transient machine After these examples the usage of a speed controller is shown. These examples will demonstrate the use of predefined records for convenient parameterization of both the machine and the control, based on machine parameters as used in the Modelica Standard Library.

Advanced Analysis of Modelica Models using MapleSim and Maple

Orang Vahid and Stefan Vorkoetter, Maplesoft, Canada

Since its inception, Modelica has held the promise of letting engineers go further with physical modeling than just running simulations. With the connection between MapleSim and Maple, users can create and document their own symbolic and numeric analyses of Modelica models in a rich problem-solving environment, in addition to performing traditional simulations.

This tutorial will guide you through the process of extracting equations from a Modelica model into a form amenable to a wide range of analysis. Through hands-on exercises, it will provide you with basic skills to solve, analyse, manipulate, and simulate these equations.

Examples will include: extracting, interrogating, and solving kinematic and dynamic equations from multibody models; creating, manipulating and discretizing PDEs; creating Modelica components from derived equations; setting-up parameter sweeps and optimizations on Modelica models.

Modeling Renewable Energy Systems with "Green Building"

[^2]bles simulations of smart home systems for autonomous buildings that are able to handle their inhabitants' energy demand and all available resources from conventional supplies to renewables.

The tutorial explains the underlying concept of the Green Building library. It demonstrates available components and usability to create individual layouts of energy efficient buildings accounting for a variety of input data, e.g. consumer demand, climate, e-Mobility and energy prices. Users learn how to model, analyze and compare different system configurations, e.g. regarding energy and life cycle costs lincl. investment, consumption, subsidies, degradation, maintenance), to find the optimal energy management solution.

Modeling conventional homes, renewable energy charging stations for electric vehicles and multi-zone buildings illustrate the capabilities of 'Green Building' and SimulationX.

Functional Mockup Interface 2.0 and HiL Applications

FMI Modelica Association Project, Dassault Systemés, DLR, ITI and Modelon

FMI 2.0 has many important extensions compared to FMI 1.0. This tutorial will give an overview about these new capabilities and the roadmap for the next year. Automotive OEMs and suppliers present FMI use cases and workflows. Leading HiL providers demonstrate the FMI support of their systems.

The Modelica FMI test package is introduced which contains test cases for connected FMUs. In practical demonstrations it is shown how FMUs with complex interactions such as coupled mechanical systems can be handled using FMI 2.0. The FMI compliance checker will be utilized for testing the conformity with the specification. It will be shown how FMUs generated by different authoring tools are integrated with a HiL platform.

This tutorial is useful for end users, decision makers and for tool vendors about to implement support for FMI 2.0.

EXHIBITION

A commercial exhibition will take place at the venue, Matteannexet, and will be open:

Tuesday	$09.30-17.00$
Wednesday	$09.00-16.00$

VENDOR	EXHIBITION STAND
Modelon AB	
..	1

Dassault Systems 2
Esterel Technologies/Ansys 3
Maplesoft Europe GmbH 4
Schlegel Simulation GmbH 5
Bausch-Gall GmbH 6
Cenit AG ... 7
XRG Simulation GmbH 8
Open Source Modelica Consortium 9
Claytex Services Limited 10
Cydesign Labs .. 11
D2T ... 12
ETAS GmbH .. 13
ITI GmbH .. 14
Concurrent Real-Time 15
LMS International 16
Wolfram Research 17
IPG Automotive 18

MATTEANNEXET SÖLVEGATAN 20A

STUDIECENTRUM
Smaller meeting rooms

VENDOR SESSION

Program of the Vendor Session on Tuesday, March 11

	VENUE: MATTEANNEXET					
	MA1	MA2	MA3	MA4	MA5	MA6
	Modelon AB	LMS International	ITI GmbH	Maplesoft Inc.	Open Source Modelica Consortium	Dassault Systèmes
17:00	Modelica \& FMI products	LMS Imagine.Lab AMESim	Simulation X	MapleSim	OpenModelica	Dymola \& CATIA
18:00	M. Engström, J. Åkesson, C. Wilhelmsson	N. Orand, M. Sasena	A. Magdanz	Paul Goossens	P. Fritzson, A. Pop, B. Bachmann	H. Elmquist, M. Frouin, G. Terpant

Venue

The meeting will take place at Matteannexet / Matematikcentrum, the Center of Mathematical Sciences located in the centre of Lund, approximately 15 minutes walking distance from Lund Central Station. Opening and closing ceremony is held at Kårhuset lacross the street from the conference venue Center of Mathematical Sciences).

Venue Address

Matematikcentrum/Matteannexet
(Center for Mathematical Sciences)
Address: Sölvegatan 20A, 22362 LUND, Sweden
Please note that the following information is in alphabetical order

Exhibition

A commercial exhibition will take place at the venue, Matteannexet, and will be open:
$\begin{array}{ll}\text { Tuesday } & 09.30-17.00 \\ \text { Wednesday } & 09.00-16.00\end{array}$

Emergency

Emergency number is 112 . This number will connect you to police, ambulance, or fire department. The emergency number does not require an area code and the phone call is free.

Internet / WiFi

At the conference venue you will be able to access wireless internet, you will find information about this at the registration desk.

Meals

Coffee breaks, lunches and Welcome Reception on Monday 10th of March are included. They will be served in the Exhibition area.

Opening Session / Closing Session

Opening and Closing Session will take place at Kårhuset (across the street from the venue Matteannexet).
Address: Sölvegatan 22a-22e.

Parking

Nearby streets offer available parking spaces.
A parking lot is located nearby the building.

Poster sessions

Wednesday 13.00-14.00 there will be poster sessions held downstairs from the Exhibition and Session hall entrances.

Prices

Prices in Sweden already contain value-added tax (VAT). Additional tips in the amount of $5-10 \%$ of the bill are usual in restaurants if you are satisfied with the food

Registration desk

The registration desk at Matteannexet will be open

Monday	$12.00-20.00$
Tuesday	$08.00-18.00$
Wednesday	$08.00-16.00$

Please contact us (Anagram Live AB) at the registration desk if you have any questions or requests and we will try to help you.

Travel/Transportation Information

Once you have arrived in Lund public transportation or walking is recommended within the city. Buses run regularly and will take you around the city. Please note that tickets can NOT be bought on the green buses, only on the yellow buses. The ticket has to be bought in advance at Skånetrafiken's customer centre (located at Malmö C and Lund C). For more information on public transport and ticket options see www.skanetrafiken.se

Bus transportation within Lund

From Clemenstorget lthe square opposite Lund Central station) to Matteannexet. Green buses (city buses) and yellow buses (regional buses). On the yellow buses you are able to pay with credit-card on the bus or buy ticket at the train station.

Green buses:

Bus number 1, towards "Östra Torn
and get off at "Tunavägen-LTH".
Bus number 6, towards "Linero Centrum",
get off at "Kårhuset".
Bus number 21, towards "Brunnshög", get off at "Kårhuset".

Yellow buses:

Bus number 160, 166, 169
From Lund Clemenstorget - Lund LTH
Get off at Lund LTH.

Taxi

At Lund central station, taxi area is located right outside.
To call a taxi from another place, phone +46 -(0) 46-330
330 Taxi Skåne or +46-(0)46-121212 Taxi Lund

Tutorials

All tutorial sessions are held at Matteannexet Monday 10 March 14.00-17.45. Coffee break is included.

Voltage

The voltage in Sweden is $220 \mathrm{~V}, 50 \mathrm{~Hz}$. Round"European" two-pin plugs and sockets are used.

Water

The tap water in Lund is safe to drink and has a good taste.

SOCIAL PROGRAM

Welcome Reception March 10 th 18.00-20.00 at

 Matteannexet (Center for Mathematical Sciences)The Welcome Reception will take place at Matteannexet. Address: Sölvegatan 20A. The reception will include refreshments and canapées. Please note that no dinner is served.

Conference Dinner March 11 th 19.00 at AF Borgen (including bus shuttle)

The Conference Dinner will take place in "Stora Salen" at AF Borgen in the very City Centre of Lund. Address: Sandgatan 2. You will enjoy a nice three course dinner with wine followed by entertainment.

Bus shuttle to the Conference Dinner from 18.15. Shuttle buses will take you from Matteannexet to the Conference Dinner at AF Borgen. The shuttle starts at 18.15.
For delegates that are booked on the recommended hotels (see below) we also offer bus shuttle back from the Conference Dinner at 23.15, leaving from Sandgatan 2, just outside AF Borgen.

1. Elite Hotel Ideon
2. Hotel Finn
3. Park inn by Radisson

BUS 21, 160, 166 \& 169

BAUSCH-GALI mmen	$31 \times$
cenit	alms siemens
sclaytex	Maplesofoft
- concurrent	Modelon
Cocreasion	OpenModelica
$3^{3} 5$ Passmut	schlege simulation
C D2T	SImuationx
ESTEEEEP	wolfram
ETMS	三XRG

GOLD SPONSORS

DS DASSAULT

[^0]: 6

[^1]: Anton Haumer, Haumer Technical Consulting, and Christian Kral, TGM, Austria

 The tutorial starts with an introduction to electric machines. This includes induction machines and permanent magnet synchronous machines. Simple applications of starting and operating the machines will be presented using the Machines packages of the Modelica Standard Library: Electrical.Machines and Magnetic.FundamentalWave. The new developments will be discussed: extension to multiphase machines with phase numbers greater than 3 , and the quasi static implementation based on time domain phasors for highest performance of long term simulations. For operating electric machines at variable speed usually closed loop drives are used. The basic principle of a closed loop drive system will be explained. For the examples presented in this tutorial a preview version of the newly developed EDrives library will be utilized. An overview of

[^2]: Dipl.-Ing. Torsten Schwan, EA Systems Dresden GmbH and Dipl.-Ing. Christian Kehrer, ITI GmbH

 This tutorial outlines the advantages of a dedicated library for modeling environmentally friendly building systems and energy management concepts. Based on the Modelica language, ITI developed the Green Building library for SimulationX in close collaboration with EA Systems and the Dresden University of Technology. This unique library ena-

