Virtual Integration for hybrid powertrain development, using FMI and Modelica models

Lionel Belmon1 Yujung Geng1 Huaqiang He2

1: Global Crown Technology, Beijing, China \texttt{Lionel.Belmon@globalcrown.com.cn}

2: Dongfeng Commercial Vehicles Technical center, Wuhan, China \texttt{hehuaqiang@dfcv.com.cn}

Dongfeng Commercial Vehicles (DFCV) is developing powertrain controls for a hybrid light truck. To support this development, a virtual integration platform is being implemented, using Modelica models and Functional Mock-up Units (FMUs) for the engine/EMS, gearbox, MCU/e-motors, driveline, tyres and longitudinal dynamics. Simulink models and/or c-code of the Hybrid Control Unit (HCU) and Transmission Control Unit (TCU) are also integrated in the platform to achieve closed-loop simulation. The virtual integration allows reproducing accurately the overall vehicle behavior and is used for optimization of gearshifts, hybrid mode switches and hybrid drive strategies.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{hybrid_powertrain.png}
\caption{Schematic of the hybrid powertrain}
\end{figure}

References

