Grey-Box Building Models
for Model Order Reduction and Control

Roel De Conincka,b, Fredrik Magnussonc, Johan Åkessonc,d, Lieve Helsenb

a3E nv., 1000 Brussels, Belgium,
bKU Leuven, Department of Mechanical Engineering, 3001 Heverlee, Belgium,
cDepartment of Automatic Control, Lund University, SE-221 00 Lund, Sweden,
dModelon AB, Ideon Science Park, SE-223 70 Lund, Sweden

Grey-Box modelling is considered as a strong framework for the creation of low-order models for analysis and control of monitored buildings. This paper presents an approach to obtain useful grey-box models in a largely automated way.

The first step is the creation of a building library with many potential model candidates. The Modelica package FastBuildings contains low-order models for thermal zones, HVAC, users, single and multi-zone buildings.

Next, a toolbox is presented that largely automates the parameter estimation of the FastBuildings models. It is implemented as a Python module that wraps the functionality of JModelica.org and presents the user a high-level interface for all common operations like data handling, model selection, parameter estimation and validation. A high-level overview of the toolbox is shown in Figure 1.

![Figure 1: Overview of the grey-box buildings toolbox](image)

The use of a gradient-based method allows an efficient numerical solution of the estimation problems. Specific attention is paid to robustness and ease-of-use. A Latin hypercube sampling of the parameter search space overcomes issues related to the non-convexity of the optimization problem.

The toolbox is applied to a model order reduction case study for a single-family dwelling. The selected model has 11 parameters and is able to predict the indoor temperature in an open-loop simulation (with a priori knowledge about weather and electricity consumption) with an RMSE of 0.16 K.