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Abstract 

Modeling of multibody mechanics plays a central 

role in the design of mechatronic systems. In 

technical use-cases, they often contain loose 

couplings, where contact is possible. We present a 

ready-to-use contact library in Modelica. It 

comprises surface definitions for simple contact 

surfaces, which can be connected with multibodies 

of the Modelica Standard Library. It implements a 

force-based approach between single contact points. 

The contact forces are calculated in configurable 

non-central contact blocks. Exemplarily, the results 

of three experiments are shown and compared to 

benchmark simulations. 

Keywords: contact library; simple contact 

surfaces; non-central contact block; contact forces 

1 Introduction and Motivation 

In the design process of mechatronic systems, the 

designers are facing the challenge of developing and 

controlling the more and more complex dynamics of 

the system. Therefore, multi-domain simulation 

models come to use from the outset of the conceptual 

design stage. As this also denotes a significant 

modeling effort, object-oriented modeling languages 

like Modelica offer the possibility to utilize and/or 

build up model libraries. The concept of ports makes 

it possible to combine and simulate components of 

different domains and origins in one model of the 

system. We intend to extend the available libraries 

by providing an idealized contact library that makes 

it possible to model contact phenomena. In 

particular, it should be possible to define each 

component separately in order to be able to reuse and 

combine approved patterns in new applications (c.f. 

[1]). 

Considering technical use-cases one often finds 

multibody mechanics that typically comprise mainly 

fixed (e.g. kinematic chains) and few loose 

couplings, where dynamic contact phenomena take 

place. Nevertheless, modeling contacts is “a key 

factor and a challenging problem in simulation of 

multibody systems (MBS), where a balance between 

performance and accuracy has to be found” [2]. 

However, to the best of our knowledge, there is 

currently no ready-to-use Modelica library available 

to handle contact problems in any level of detail. 

Otter et al. [3] suggest a force-based extension to the 

Modelica MultiBody Library to enable central 

collision handling. Herein, three variants to define 

contact surfaces are described (parametric surfaces, 

algebraic constraint surfaces, surfaces of polytopes). 

In [4] the surfaces of arbitrary bodies in the MBS are 

discretized by means of polygons. The approach 

presented in this paper differs from that, as it 

implements contact modeling by means of non-

central contact blocks. It provides combinable, 

simple contact surfaces, which are described by 

single contact points. 

We observed that in many industrial applications, 

even if the complete bodies are of complex shape, 

only a certain part of them contacts with others. The 

actual contact surfaces are often designed to be 

simple. Thus, the aim is to enable the designer to 

perform simulations of such systems including 

idealized representation of the contacts. Thereby, the 

analysis of the principle functional capability of the 

system in the course of the conceptual design is 

focused. This entails specialized modeling principles 

concerning the usability and the interpretation of the 

simulation results, which both should be relatively 

easy.  

2 Concept of the Contact Library 

Multibody mechanics is usually modeled using rigid 

bodies, which are described by their mass, located in 

the center of mass (CM), and their moment of 

inertia. In order to be able to model elastic, non-stiff 

collisions one has to weaken the rigid body 

assumption a little. Furthermore, one has to consider 



the shape of the bodies. We address these two issues 

in the following subsections. 

2.1 Idealization of the Elastic Foundation Model 

References in literature introduce a so called 

“foundation model” to approximate the complex 

contact theory of Hertz and others in the context of 

multibody simulation [4,5,6,7,8]. It is assumed that 

the contact area is small compared to the dimensions 

of the contacting bodies (nonconforming contacts). 

The foundation model comprises a thin elastic or 

viscoelastic layer between the rigid bodies and 

neglects shear stress. With these assumptions, which 

are valid for isotropic and homogenous materials, 

one is able to describe dynamic as well as static 

contact incidents. The force-based approach 

contrasts with idealized impulse-based calculations, 

which are only applicable for stiff contacts [3]. 

We use a further idealization (c.f. Figure 1) that is 

based on single force elements. Assuming that the 

contact area is not only relatively small but also of an 

idealized shape, we describe it by means of single 

contact points. A nonlinear spring-damper element is 

inserted to calculate the normal force    between 

these points of the colliding surfaces. This requires 

the previous identification of possible contact points 

on the rigid body surfaces and the continuous 

determination of the normal direction. For these 

purposes, we provide analytic solutions for simple 

geometries in our library. The normal force is then 

used to determine the friction force     between the 

two bodies in the tangential direction. 

 
Figure 1: Idealization of the elastic layer  

2.2 Classification of Contacts 

As a starting point, we focused on spherical, 

cylindrical and plane surfaces, either in rectangular 

or circular shape. Depending on the shape of the 

contact area, we use 1 (punctiform), 2 (linear) or 4-5 

(planar) points to describe it. The position of the 

respective number of potential contact points is 

calculated on both of the contact bodies and the 

collision detection is performed for each pair of 

potential contact points. Figure 2 shows the shape of 

the contact area for all possible combinations, as 

well as the number of contact points. As the contact 

region may alter with the moving bodies, the contact 

points will also move on the defined surface. 

 
Figure 2: Shapes of the contact area and number of 

contact points for the different contact pairs1. 

2.3 Definition of Contact Surfaces 

To describe the aforementioned, elementary contact 

surfaces (Figure 2), we provide ready-to-use blocks. 

The surface blocks represent a thin and massless 

layer, which can be connected to any kind of rigid 

body by a frame connector (c.f. Figure 3). The 

dimensions of the surface can be parameterized. In 

order to be able to use the dimensions in the contact 

block we introduce a new interface to connect the 

surface definition with a contact block. This adds a 

vector to the MultiBody frame of the Modelica 

Standard Library that comprises maximum three 

terms to describe the surface geometry (e.g. width, 

length) and the respective direction vectors to get the 

orientation in the connected frame. The latter 

constitutes the body coordinate system (BCS) of the 

contact surface. 

 
Figure 3: Example of a multibody model including 

contact 

                                                      
1
 Spherical, cylindrical and plane surfaces are displayed 

by the respective icon, which also indicates the maximum 

number of contact points. 
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Figure 3 displays an example of the intended use of 

the contact library. While the shape of the rigid 

bodies may be arbitrary, the shapes of the surfaces 

that possibly can collide are defined to be a circular 

and a rectangular plane. For example, body 1 may 

represent a bottle with a round and plane base. As 

this stands on a rectangular desk only these two 

simple contact surfaces have to be defined. More 

complex contact surfaces may be assembled from 

elementary ones, where every pair of surfaces is 

connected via a contact block. The contact block is 

adjusted to the respective surface combination by 

using the replaceable method for class 

parameterization in Modelica. 

3 Modeling of the Contact Block 

The calculation of the appropriate force in the 

contact block clearly depends on the combination of 

surfaces. Nevertheless, a comprehensive sequence 

(c.f. Figure 4) can be established that is implemented 

in the contact block and performed in each time step. 

As mentioned before, the sphere-to-sphere, sphere-

to-cylinder and sphere-to-plane contact areas are 

described via a punctiform contact. In these cases, 

three steps have to be passed to determine the 

contact force. First, a potential contact point is 

determined on each of the two contact surfaces. The 

contact condition for these two points is checked in 

the next step. If the condition is fulfilled, the two 

bodies collide and the contact force between the two 

contact points is calculated. Otherwise, no contact 

force is applied. 

 
Figure 4: Calculation of the contact force 

In the case of linear or plane contact, the contact area 

may become smaller if only parts of the surfaces 

collide, whereas the shape stays the same. Thus, 

additional contact point movement may be 

necessary. Here, the detection of contact points and 

the contact condition checking are performed 

analogously in the first two steps. If the contact 

condition 1 is not fulfilled, the contact points are 

displaced to a new position on the contact surfaces in 

a way that contact between the new potential contact 

points might be possible. The latter is checked by 

evaluating the second contact condition. If a collision 

occurs, the respective contact force is calculated and 

applied. 

3.1 Contact Detection 

The main principle of the implemented contact 

detection is shown with the help of two examples. 

The first example comprises a contact between a 

sphere and a cylinder (c.f. Figure 5). Initially, the 

bodies are represented by their centroids    and    

in the MBS model. Two body-fixed frames BCS1 

and BCS2 describe these two points. Furthermore, 

we assume that the lateral surface of the cylinder and 

the spherical surface of the ball are defined 

according to Section 2.3. Consequently, the two 

frames, the radius   of the ball and the length    and 

the diameter    of the cylinder, as well as the 

direction vectors of   and   resolved in BCS1, are 

available in the contact block. 

In order to determine the potential contact points, the 

sphere-centroid    is projected on the longitudinal 

direction of the cylinder. The latter is represented by 

the  -direction of BCS1 by default. The result of the 

projection is the point   
  given in BCS1. However, 

the absolute position of the point   
  is limited to 

   ⁄ . This ensures that the point is always located 

between the two end faces of the cylinder. The local 

coordinate system LCS1 is defined in   
  and has the 

same orientation as BCS1. 

 
Figure 5: Contact point detection of the sphere-to-

cylinder contact model 

Based on vector   
   

⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ the direction vector     is 

computed. Then, the orthogonal projection        of 

the vector     is determined in the  - -plane of LCS1. 

We obtain the first potential contact point    by 

displacing   
  along the vector      . As    lies on the 

cylinder surface, the distance is given by    . In the 

potential contact point   , the local coordinate 

system LCS2 is defined. Again, the orientation of it 

is equivalent to BCS1. With the help of LCS2 the 

position of the potential contact point    on the ball-
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surface can be calculated. Therefore, the vector     
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ 

and the direction vector     are determined. By 

moving    along      we calculate the position of the 

second potential contact point    on the spherical 

surface. The vector     also constitutes the normal 

direction for the force calculation (c.f. Section 3.3) in 

this case. 

After the determination of the potential contact 

points    and   , the contact condition is evaluated 

(c.f. Equation (1)). It consists of two terms. On the 

one hand, it is verified that the distance between the 

points    and   
  is less than radius of the cylinder 

end face (   ) and greater than the difference 

between the radius and the maximum penetration  . 
The latter results from the assumption of a thin 

contact layer. This evaluation is performed in LCS1. 

On the other hand, the interval |   
| between    and 

   in the longitudinal direction of the cylinder has to 

be less than or equal to     . This is evaluated in 

BCS1. If both conditions are fulfilled at the same 

time, the two bodies intrude and the contact force is 

applied to the contact points (c.f. Section 3.3). 

        (
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The second example is the collision between a 

cylinder and a circular plane (see Figure 6), which 

denotes a linear shape of the contact area. As regards 

the circular plane, the geometry is sufficiently 

described by the radius  . Again, body-fixed 

coordinate systems (BCS1 and BCS2) are defined in 

the centroids    of the cylinder and    of the plane. 

The  -direction of BCS2 represents the vertical 

direction of the plane and the normal direction for 

force calculation. According to Figure 2 the contact 

area has a linear shape. Thus, two potential contact 

points have to be determined on the surface of the 

cylinder. These do not necessarily touch the plane at 

the same time. 

To detect the contact points on the surface of the 

cylinder, the centers     and     of the two end faces 

are observed. The local coordinate systems LCS1 

and LCS2 in these points are oriented like BCS2. In 

preparation for the potential contact point    , the 

unit vector     of the  -direction in BCS1 and the 

orthogonal projection      on the  -  -plane of BCS2 

are determined. Then, we implemented the following 

rotation sequence to get local coordinate systems that 

are orientated as needed. As regards    , the local 

coordinate system LCS1 is rotated about the  -axis 

(LCS'1) and the  -axis (LCS''1) thereafter. The 

rotation angle   is determined by the scalar product 

of      and the unit vector of the  -direction of the 

BCS2. Whereas   is specified by the angle between 

the vectors     and     . The contact point     is then 

given by ( ,    , ) in the obtained system LCS''1. 

With the same principle, one can also determine the 

point    . In addition, the contact points     and     

on the surface of the circular plane can be located by 

projecting     and     onto the plate (BCS2). 

 
Figure 6: Contact point detection of the circle-to-

cylinder contact model 

Based on these preliminary, potential contact points 

the contact condition 1 is evaluated. It consists of 

three parts. As an example, the condition related to 

    is given in Equation (2). The variables     
,     

 

and     
 are the components of     in the 

corresponding direction given in BCS2. To detect a 

collision, the absolute position in the  - and  -

direction must not be greater than the radius of the 

plane, and the penetration depth must not exceed the 

maximum value of   in the negative  -direction. 
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3.2 Contact Point Movement 

However, contact between the cylinder and the 

circular plane might be possible, even if the contact 

condition 1 is not fulfilled. Figure 7 shows a 

configuration where the term i in Equation (2) is 

false. In this case, the preliminary contact point     

should be displaced along the contact surface. We 

use the law of cosines to calculate the position of this 

new point     . Considering the displayed triangle 

(Figure 7), we get the displacement   by the 

following equations. 

                  

  |     
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑|    (3) 

          ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑         
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑  



 
Figure 7: Contact point movement in the circle-to-

cylinder contact model 

The vector       ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑  ⃑ can be replaced by the length 

direction of the cylinder, which is available from the 

contact interface (c.f. Section 2.3). Thus, the new 

contact point    
  is determined and the analogous 

contact condition 2 is checked. 
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Since every linear contact region denotes a possible 

one-directional displacement of preliminary contact 

points, the contact detection in these cases is very 

similar. In contrast, planar contact regions lead to 

two directions of motion. Exemplarily, the contact 

point movement in the case of two rectangular planes 

is described in the following. 

The initial situation of the example is shown in 

Figure 8. Again, the body-fixed coordinate systems 

BCS1 and BCS2 are defined in the two centers    

and   . The geometry information of each plane 

contains the length   and the width  . The potential 

contact points are placed in the four corners of the 

planes. The contact condition in Equation (5) is used 

for the potential contact point    . 

         (|    
|  

  

 
)

⏟        
 

 (       
  )⏟          

  

 (|    
|  

  

 
)

⏟        
   

    (5) 

 
Figure 8: Initial contact points and coordinate 

systems of the rectangle-to-rectangle contact model 

If the contact condition in Equation (5) cannot be 

fully met, the corresponding point is displaced along 

the two adjacent edges of the rectangular plane and 

two new points are obtained. However, it must be 

ensured that the displacement cannot exceed the 

length of the respective edge. Figure 9 exemplarily 

shows a configuration, where one of the initial 

contact points of plane 1 is outside plane 2. The 

condition   in Equation (5) is violated, which means 

that the contact point exceeds plane 2 in  -direction 

of BCS2. The height     of the displayed triangle 

constitutes the distance between      and the nearest 

edge on plane 2. It is calculated by the following 

equation. 

    |    
|  

  

 
    (6) 

The relationship between the displacement of      

and the distance     can then be expressed with the 

help of the angle  . 

       (
   

|    |
   )  

         
   

|    |
        (7) 

From these equations the two new potential contact 

points       and       are obtained by circumventing 

singularity problems in case of     or       . 
Again, the second collision detection is evaluated to 

check whether contact forces have to be applied or 

not. As a result, it is possible that a maximum of five 

points can represent planar contact areas. 

When implementing the contact point movement in 

Modelica, we tried to minimize the number of DAEs 

and events. Therefore, for example the prismatic 

block of the Modelica Standard Library has been 

modified in order to be adaptable to the respective 

direction. It is furthermore possible to disable the 

inserted filtering of the contact point displacement. 

Because it is usually continuously differentiable, this 

denotes an effective possibility to reduce the 

simulation time very often (see Section 4). 

 
Figure 9: Contact point movement of the rectangle-

to-rectangle contact model 

3.3 Contact Forces 

The three-dimensional contact force is applied, if the 

contact condition holds for one contact point. It 



consists of both the normal force and the tangential 

friction force. The respective directions can be 

obtained by means of the local coordinate systems in 

the contact points. As aforementioned, the 

continuous surface layer is replaced by a nonlinear 

spring-damper element. Consequently, the normal 

force    is determined by means of the penetration   

in normal direction, and the penetration velocity  ̇. A 

continuous contact force model with hysteresis 

damping according to [9] is implemented (Equation  

(8)). Nevertheless, selecting    ,     one can 

get the linear Kelvin-Voigt model, where the 

coefficients   and   are the spring and damping 

constants. Choosing     a formulation according 

to [10] is obtained. 

           ̇     (8) 

In order to calculate the friction forces without 

further discontinuous events, which would decrease 

the simulation speed and impede controller design, 

we use the continuously differentiable friction model 

of Makkar et al. [11]. They introduced the following 

function of the relative velocity      to approximate 

the friction coefficient   of the characteristic 

Stribeck curve. 

                                     
                                (9) 

Thus, no ideal static friction can be obtained, 

because the actual force to be applied in the ideal 

static state is independent of the relative velocity      

of the two contact points. Static friction is rather 

represented by sliding with very small relative 

velocities. However, this in fact matches the actual 

characteristics of many tribological systems [12]. To 

set the unknown, non-physical constants    (  
   ) we use five parameters, which are shown in 

Figure 10. The parameters    and    denote the 

coefficients of static and kinetic friction. The limit 

velocities     and     define the beginning of mixed 

and viscous friction. The latter is described by the 

proportionality factor   . 

 
Figure 10: Approximation of the Stribeck friction 

curve 

As an example, the following force vector (resolved 

in the LCS) is applied to the contact points of plane 1 

of the rectangle-to-rectangle contact, if the contact 

condition is fulfilled.  

         (
     

  
     

)             (10) 

4 Simulation Results 

In this section, we will show some of the obtained 

results. We present three experiments, which were 

performed in Dymola using the DASSL solver. The 

results are compared to a benchmark simulation in 

the commercial MBS software RecurDyn. Herein, a 

powerful recursive algorithm to model contact 

problems is implemented, which is based on contact 

forces as well [13]. Despite the comprehensive and 

complex solid-to-solid contact that can be used for 

arbitrary CAD-geometries, RecurDyn offers the 

possibility to utilize idealized contact definitions for 

simple surfaces. In each of the three experiments, all 

parameters
2
, including the contact force calculation 

as well as the solver settings, are attuned to fit each 

other exactly. The direction of gravity is the negative 

 -direction of the ICS. When selecting the presented 

experiments, we refer to the aforementioned surface 

configurations (c.f. Section 3). 

Experiment 1 comprises a sphere (       , 

      ) falling onto a cylindrical contact surface. 

The initial position of the sphere centroid is 

(0, 0.05, 0.002). It is not coupled, whereas the 

position of the cylinder is fixed in the ICS. The latter 

has a diameter of         and a length of 

      . In this configuration two collisions occur. 

After the second contact with the cylinder surface, 

the sphere falls down beside the cylinder. Figure 11 

shows the  -position of the centroid of the sphere. 

One can see that the calculated trajectories of the 

different tools are comparable. In this case, the effect 

of the nonlinear damping seems to be slightly higher 

in Dymola than in RecurDyn. Nevertheless, the 

peaks in the normal forces nearly coincide at 

approximately 21 N and 9 N (not shown).  

In Experiment 2, a cylindrical body (       , 

      ,       ) falls on a circular plane 

(      ) and then rolls down. The plane is fixed in 

the ICS, but rotated by 5° around the  -axis. The 

initial position of the cylinder is (0, 0.02, 0). As the 

cylinder reaches the end of the plane, the preliminary 

contact points are displaced along the length 

                                                      
2
 All units are specified according to the International 

System of Units (SI) 



direction. In Figure 12 some results are displayed 

exemplarily. We again observe that the positions of 

the centroid largely comply. The initial angular 

velocity (around the length direction) of the cylinder 

after the hit is slightly smaller in RecurDyn than in 

Dymola, while the acceleration is equivalent. The 

RecurDyn model (solid-to-solid contact) shows some 

implausible behavior right before the end of the 

plane is reached. Unless no external force is applied, 

deceleration can be monitored here. For these two 

reasons, the cylinder stays about 10ms longer on top 

of the plane. 

 
Figure 11: Sphere falling on a fixed cylinder;  

parameters:      ,     ,      ,      , 

      ,           ,         ,          , 

        ,       

 
Figure 12: Cylinder on a circular plane; parameters: 

     ,      ,    ,    ,        , 

         ,           ,       

Experiment 3 contains a cuboid body (      , 

     ,       ,        ) falling and 

afterwards sliding on a rectangular plane. The plane 

(     ,        ) is again fixed in the ICS and 

rotated by 15° around the  -axis. What can be seen 

in the plots (Figure 13) is that we get very similar 

movement of the box, despite an observed higher 

velocity in RecurDyn. In our opinion, the small 

divergence we obtain may be due to three reasons. 

(1) Again, the effect of the damping is slightly higher 

in Dymola, which leads to more sliding and therefore 

more decelerating friction forces. (2) The 

approximation of the Stribeck curve varies, which 

may lead to differences. (3) The handling of forces at 

the edge of the plane may be different (compare to 

Experiment 2). 

In the case of our contact model the contact points 

are moved as displayed in Figure 14 (see Figure 8 

also). As     constitutes the first edge of the cube to 

reach the end of the plane, it is the first contact point 

to be split up and moved in the length and width 

direction. The movement is limited to the respective 

dimensions of the cube. 

 
Figure 13: Box falling and sliding on a plane; 

parameters:      ,      ,      ,    , 

       ,        ,         ,            

         ,      

To evaluate the efficiency of the contact library in 

the context that was outlined in the beginning, we 

also investigated the “CPU-time for integration“. 

Table 1 compares this characteristic property of the 

aforementioned models (simulated time     ). The 

results depict the experiences we made in various 

tests and further experiments. While in general, the 

integration times are comparable, they strongly 

depend on the number of contact points in Dymola. 

One can observe a strong increase, especially when 

movement of contact points occurs and the 

calculated displacement is filtered. On the other 

hand, modeling a rolling body sometimes leads to 

problems in RecurDyn, which is reflected in the 

CPU-time (see also Figure 12). 
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Figure 14: Contact point movement resolved in the 

local coordinate systems 

Table 1: CPU-time for integration
3
 

 Dymola RecurDyn 

Experiment 1 0.37s  0.20s (sphere-to-cylinder) 

0.50s (solid-to-solid) 

Experiment 2 3.52s (filter 10kHz) 

0.61s (filter disabled) 

4.98s (solid-to-solid) 

Experiment 3 5.86s (filter 10kHz) 

5.63s (filter disabled) 

0.59s (surface-to-surface) 

1.90s (solid-to-solid) 

5 Conclusion and Future Work 

In conclusion, we state that our idealized contact 

library provides a powerful and easy to use 

opportunity to model contact phenomena of simple 

contact geometries. Results of various experiments 

where compared and verified by means of analogous 

simulations in RecurDyn. The chosen architecture 

with the implemented contact interface and the 

configurable contact block matches the idea of 

reusing composable models. It is therefore especially 

useful in the conceptual design of mechatronic 

systems. 

In the future, we want to provide more contact 

surfaces. In addition, we will investigate a possibility 

to save simulation time by disabling the contact 

calculation when they are not needed. Despite the 

validation with RecurDyn, comprehensive 

measurements are necessary. The major drawback of 

the force-based approaches is that the spring/damper 

parameters cannot be obtained directly from the 

given material properties. These parameters also 

depend on the surface combination and are usually 

determined experimentally. To tackle this, we plan to 

                                                      
3
 The simulations were performed on an Intel Core2Duo 

CPU with 2.53GHz and 4GB RAM 

provide ready-to-use parameter sets for often-used 

combinations. After making our library publicly 

available, we also hope to identify further 

opportunities for improvement with the help of the 

Modelica community. 
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