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Abstract

Efficient calculation of the solutions of nonlinear op-
timal control problems (NOCPs) is becoming more
and more important for today’s control engineers. The
systems to be controlled are typically described using
differential-algebraic equations (DAEs), which can be
conveniently formulated in Modelica. In addition, the
corresponding optimization problem can be expressed
using Optimica.
Solution algorithms based on collocation methods are
highly suitable for discretizing the underlying dy-
namic model formulation. Thereafter, the correspond-
ing discretized optimization problem can be solved,
e.g. by the interior-point optimizer Ipopt. The perfor-
mance of the optimizer heavily depends on the avail-
ability of derivative information for the underlying op-
timization problem. Typically, the gradient of the ob-
jective function, the Jacobian of the DAEs as well as
the Hessian matrix of the corresponding Lagrangian
formulation need to be determined. If only some or
none of these derivatives are provided, usually numer-
ical approximations are used by the optimizer inter-
nally.
OpenModelica supports the Optimica language and is
capable of automatically generating the discretized op-
timization problem using collocation methods as well
as the whole symbolic machinery available. In ad-
dition, all necessary derivative information is deter-
mined using the automatic differentiation capabilities
of ADOL-C, which has now been integrated into the
OpenModelica environment.
Keywords: Modelica; optimization; automatic differ-
entiation; collocation; OpenModelica; ADOL-C

1 Introduction

The aim of this paper is to describe an efficient new
solution process implemented in OpenModelica [11]
for nonlinear optimal control problems. This effort
continues the development of the collocation approach
already discussed in [3], which has been success-
fully tested using the algorithmic differentiation tool
CasADi [18]. Several enhancements, e.g. special
treatment of the first collocation interval, integration
of the automatic differentiation tool ADOL-C, as well
as efficient and stable calculation of all derivative in-
formation, have been realized in OpenModelica and
are demonstrated within this paper.
Efficient calculation of first order derivatives is possi-
ble with OpenModelica based on symbolic differentia-
tion and has been successfully demonstrated using real
world problems in [5]. This calculation of the deriva-
tives benefits on the one hand from the simplification
of expressions and on the other hand from the code,
which is efficiently generated by OpenModelica. For
optimization purposes the second order derivatives are
important as well, since most of the optimization algo-
rithms rely on them, e.g. Ipopt [19], which is used in
this work. Second order derivatives are currently not
symbolically available in OpenModelica, but could be
provided numerically based on the already mentioned
first order derivatives.
Another possibility is using the automatic differenti-
ation tool ADOL-C, which is capable of working di-
rectly with the generated code of OpenModelica and
has already been used successfully with Ipopt. More-
over, ADOL-C comes with a lot of additional features,
e.g. efficient calculation of derivatives of different or-
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ders. Last but not least, the implementation leads to a
very fast solution with little memory costs for the un-
derlying NOCP. The modeling and problem descrip-
tion is done in Modelica [8] extended with the opti-
mization objective functions specified in Optimica [1].
This paper is organized as follows. In section 2, the
mathematical representation of the nonlinear optimal
control problem is discussed. The main idea of dis-
cretizing the NOCP based on orthogonal collocation
principles is described in section 3. The efficient re-
alization of the derivative calculation using ADOL-C
is demonstrated in section 4. Section 5 presents the
implementation details with respect to scaling, initial-
ization and derivative calculation. Finally, the perfor-
mance of the newly developed tool chain is discussed
in section 6. The paper concludes the work with final
remarks and suggestions for future work.

2 Nonlinear Optimal Control Prob-
lem (NOCP)

In many applications the NOCP is described by the
following mathematical representation [10]:

min
u(t)

J(x(t),u(t), t) = E(x(t f ),u(t f ), t f )+

∫ t f

t0
L(x(t),u(t), t) dt (2.1)

s.t.

x(t0) = x0 (2.2)

ẋ(t) = f (x(t),u(t), t) (2.3)

ĝ(x(t),u(t), t) ≤ 0 (2.4)

r(x(t f )) = 0 (2.5)

where x(t) =
[
x(1)(t), . . . ,x(nx)(t)

]⊤
and u(t) =[

u(1)(t), . . . ,u(nu)(t)
]⊤

are the state vector and control
variable vector for t ∈ [t0, t f ], respectively. The con-
straints (2.2), (2.3), (2.4) and (2.5) represent the initial
conditions, the nonlinear dynamic model description
based on differential algebraic equations (DAEs), the
path constraints ĝ(x(t),u(t), t) ∈ Rnĝ and the terminal
constraints [3]. With respect to the implementation in
Ipopt and the Modelica language, it is appropriate to
split the box constraints from ĝ(x(t),u(t), t) ≤ 0, i.e.

xmin ≤ x(t) ≤ xmax

umin ≤ u(t) ≤ umax

and to introduce so-called slack variables for the rest

g(x(t),u(t), t)+ s(t) = 0

with s(t) ≥ 0 ∈Rng . Therefore, it is possible to use the
attributes min and max already available in Modelica
for the description[9].

Modelica model description

The mathematical representation of a Modelica model
is typically given by DAEs

F(x(t),u(t),y(t), t) = 0.

However, most Modelica tools, especially OpenMod-
elica, are capable of converting this formulation (by
means of the so-called BLT transformation [2]) into a
semi-explicit ODE form as formulated also in (2.3)

ẋ(t) = f (x(t),u(t), t),

y(t) = h(x(t),u(t), t).

In general, there is no closed expression for the func-
tions f and g, but rather, iterative techniques, e.g.,
Newton’s method, are employed to solve the so-called
occurrent linear or nonlinear algebraic loops [2].
At this point it is possible to choose between two
strategies for the discretization of (2.3). On the one
hand, it is feasible to transform these algebraic loops
into residual form and to add them subsequently to the
discretized NOCP formulation. This approach has the
advantage that the costs for solving the algebraic loop
in each evaluation of the function f are saved. How-
ever, the solver space as well as the workload of the
optimizer increases. On the other hand, the algebraic
loop can be solved during each optimizer step by a lin-
ear or nonlinear solver, depending on the type of prob-
lem. This procedure might have the drawback, that the
solution of these algebraic loops might be also quite
time consuming, especially in the case of a highly non-
linear equation system.
This paper focuses on the second strategy. The semi-
explicit ODE form is generated using OpenModelica
and solved for each optimizer step. In addition, a more
general NOCP formulation can be converted by means
of the BLT transformation to a semi-explicit NOCP as
stated in (2.1), (2.2), (2.3), (2.4) and (2.5).

3 Collocation

Previous work [3] has shown that solving the NOCP
with a collocation approach is efficient. Therefore,
the choice of collocation nodes is important, since
that influences the stability and order of the integra-
tion method [7, 16]. The RADAU IIA method [4] is
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one possible method to choose the collocation nodes.
RADAU IIA is an implicit Runge-Kutta method and is
typically described in the form [16]:



xi,1 − xi
...

xi,m − xi


= ∆ti · (A⊗ I) ·




f (xi,1,ui,1, ti,1)
...

f (xi,m,ui,m, ti,m)


 (3.1)

with xi, j = x(ti, j), xi := x(ti), ui, j = u(ti, j), ti, j := ti +
τ j ·∆ti and ti := t0 +∑i

l=1 ·∆tl where ∆ti, i = 0, . . . ,n is
the length of a subinterval and τ j ∈ [0,1], j = 1, . . . ,m
are the collocation nodes. A and I are the Butcher and
identity matrix, respectively. If det(A) 6= 0, equation
(3.1) can be transformed [7] to the following form

Fi(.) :=
(
A−1 ⊗ I

)
·




xi,1 − xi
...

xi,m − xi


−∆ti ·




f (xi,1,ui,1, ti,1)
...

f (xi,m,ui,m, ti,m)




This form leads to a sparse structure for the Jacobian
matrix, since in equation (3.1) the sparse structure is
destroyed by multiplication of the dense matrix A.
The RADAU IIA can be interpreted as a Lagrange in-
terpolation of the state x(l)(t) [3, 4]

x(l)(ti + τ ·∆ti) ≈
m

∑
j=1

p j(τ) · x(l)
i, j for τ ∈ [0,1].

The corresponding Lagrangian polynomials are p j. In
order to handle constraints for der(u) the control vari-
able u(l)(t) needs to be interpreted as a Lagrange inter-
polation as well:

u(l)(ti + τ ·∆ti) ≈
m

∑
j=1

p j(τ) ·u(l)
i, j .

Therefore, it is possible to calculate der(u) as

du(l)(t)
dt

=
∂u(l)(ti + τ ·∆ti)

∂τ
·∆ti ≈ ∆ti ·

m

∑
j=1

∂ p j

∂τ
(τ) ·u(l)

i, j .

Moreover, the constraints based on RADAU IIA re-
sult in an unbounded expression f (x0,u0, t0), since the
node τ j = 0 is not part of the RADAU IIA integration
scheme, especially the expression u(t0) is unbounded.
The principle is visualized in figure 1. This issue can
be addressed by using the LOBATTO IIIA method,
which includes the nodes τ1 = 0 and τm = 1. Thus, the
LOBATTO IIIA method yields an influence of u(t0) on
the NOCP. Therefore, the principles of the collocation
discretization will be applied not only to states, but
also to the control variables. This approach is referred
to as total collocation [3, 18].

Figure 1: RADAU IIA schema

3.1 Lobatto IIIA

In comparison to RADAU IIA the LOBATTO IIIA
method has a singular matrix A [16]. The number of
nonzero elements of the Jacobian matrix can be re-
duced by multiplying the matrix A with B−1 so that

[
0
∣∣ B−1] ·A =

[
0
∣∣ B−1] ·




0 0 · · · 0
a2,1 a2,2 · · · a2,m

...
...

. . .
...

am,1 am,2 · · · am,m




=
[
0
∣∣ B−1] ·

[
0 0

A1 B

]
=
[
Â1
∣∣ I
]
.

Furthermore, the equation (3.1) can be transform for
the special case LOBATTO IIIA as follows

F̂0(.) :=
(
B−1 ⊗ I

)
·




x0,2 − x0
...

x0,m − x0


−

(A1 ⊗ I) ·∆t0 ·




f (x0,1,u0,1, t0,1)
...

f (x0,1,u0,1, t0,1)


+

∆t0 ·




f (x0,2,u0,2, t0,2)
...

f (x0,m,u0,m, t0,m)




(3.2)

Note that x0 is bounded and solved with equation (2.2),
so x0 is known for the optimization process. Thus,
there is no need to differentiate equation (3.2) with re-
spect to x0, this results only in nonzero elements for
u0.
Besides, for RADAU IIA and LOBATTO IIIA applies

x0 = x 0,1 and x i+1 = x i,m,

which is solved symbolically without the optimization
loop.
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3.2 Discretized Lagrange term

Now, it is possible to use the property of the colloca-
tion method that

x(ti, j) ≈ xi, j

for the approximation of the Lagrange term (2.1) based
on quadrature formulas. Obviously, it makes sense to
apply methods of Lobatto and Radau quadrature.

Φ(x, u, t) := ∆t0 ·
m

∑
j=1

ŵ j ·L0, j +
n−1

∑
i=1

∆ti ·
m

∑
j=1

w j ·Li, j

≈
∫ t f

t0
L(x(t),u(t), t) dt

(3.3)

where Li, j := L(xi, j,ui, j, ti, j), ŵ represents the Lo-
batto weights, w the Radau weights, and the abbre-
viations x := [x0,1, . . . ,xn,m], u := [u0,1, . . . ,un,m], and
t := [t0,1, . . . , tn,m].

3.3 Discretized NOCP

Finally, the NOCP can be discretized:

min J(x,u,s, t) = E(xm,n−1,um,n−1, tm,n−1)+Φ(x,u, t)

s.t.

c(x,u,s, t) !
= 0

umax ≤ u ≤ umin
xmax ≤ x ≤ xmin

0 ≤ s

where

c(x,u,s, t) :=




F̂0(.)
g(x0,1,u0,1, t0,1)+ s0,1

...
g(x0,m,u0,m, t0,m)+ s0,m

F1(.)
g(x1,1,u1,1, t1,1)+ s1,1

...
g(x1,m,u1,m, t1,m)+ s1,1

Fn(.)
g(xn,1,un,1, tn,1)+ sn,1

...
g(xn,m,un,m, tn,m)+ sn,m

r(xn,m,un,m, tn,m)




and x0,1 = x0 with s = [s0,1, . . . ,sm,n], si, j = s(ti, j).

3.4 Nonlinear optimization

Now, the original NOCP is transformed to a nonlin-
ear optimization problem, where the optimizer needs
to find the optimal discretized control vector u and to
adapt x,s so that the constraints are fulfilled. For this
operation the optimizer requires the first order deriva-
tives from E(.), Φ(.) and c(.) as well as the second
order derivatives from the Lagrangian function

L(z,λ , t) = E(.)+Φ(.)+λ⊤ · c(.) (3.4)

to find the solution. The sorting of c(.) and z = [x,u,s]
is substantial for a good Jacobian- and Hessian-
structure. The block

Gi(.) :=




Fi(.)
g(xi,1,ui,1, ti,1)+ si,1

...
g(xi,m,ui,m, ti,m)+ si,m




can be sorted more efficiently, if this is investigated in
more detail. Furthermore, it applies

∂x(l)
i, j

∂x(c)
a,b

=
∂x(l)

i, j

∂u(d)
a,b

=
∂u(e)

i, j

∂u(d)
a,b

=
∂u(e)

i, j

∂x(c)
a,b

= 0

for i,a = 0, . . . ,n, j,b = 1 . . . ,m, l,c = 1 . . .nx,
e,d = 1, . . . ,nu and l 6= c, e 6= d as well as

∂x(l)
i, j

∂x(l)
i, j

= 1 =
∂u(e)

i, j

∂u(e)
i, j

Therefore, the Jacobian and Hessian matrices become
very sparse. Furthermore, it should be taken advantage
of the cyclic structure in c(.), which results from the
same structure in G1(.), . . . ,Gn(.).

4 Derivatives

There are at least three different ways to compute the
derivative information required by a calculus-based
optimization approach: Finite Differences, Symbolic
Differentiation and Algorithmic Differentiation. The
first technique, i.e., finite differences (FD), is based on
the Taylor expansion and yields to relatively impre-
cise derivative information. Furthermore, the result-
ing computational cost is high in comparison to the
two other approaches. For example, the gradient of
a scalar-valued function with N input variables is ap-
proximated using FD with N +1 function evaluations.
For these reasons, FD approximations of derivatives
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will not be considered in this section. Alternatively,
one may analytically derive expressions to evaluate the
exact derivative based on the obtained formula. This
can be done by hand, which results in an error-prone
process, or automatically as provided, e.g., by Maple.
Natural a Modelica compiler like OpenModelica has
also capabilities to differentiate symbolically a Mod-
elica model (see [5], [2]).
This purely symbolic method usually yields a very
efficient way to compute first-order derivatives for
closed-form expressions. However, the computation
of higher-order derivatives or the handling of itera-
tive solution procedures still form major challenges
for this approach. The usage of algorithmic dif-
ferentiation (AD), also called automatic differentia-
tion, offers a third alternative to compute gradients,
Jacobians and/or Hessians required for optimization.
Based on the exploitation of the chain rule, AD pro-
vides derivative information of arbitrary order within
working accuracy for a function F : RN → RM eval-
uated in a code segment on a computer [14]. The
complexity estimates for the two basic approaches of
AD, namely the forward mode and the reverse mode,
are based on the operation count OF , i.e., the num-
ber of floating point operations required to evaluate
y = F(z). Using the forward mode, one computes the
required derivatives together with the function evalua-
tion in one sweep. This approach yields one Jacobian-
vector product ∇Fv,v ∈RN for no more than 2.5 times
OF . One vector-Jacobian product, or equivalently
∇F⊤w,w ∈ RM , is obtained using the reverse mode in
its basic form also for no more than four times OF . If
M = 1, i.e. ∇F corresponds to the gradient of a scalar-
valued function, this complexity bound for the reverse
mode is completely independent of the number n of in-
put variables. Therefore, it is also known as the cheap
gradient result. More details about AD can be found
in the books [15] and [17] as well as on the web-page
www.autodiff.org.

4.1 Efficient Jacobian evaluation

For the examples considered here, the Jacobian
of the equality constraints c : RN → RN is an
almost square matrix of dimension N, where
N = (n+1) ·m · (nx +ng). Hence, as a first approach
to evaluate the full Jacobian, one may compute the
Jacobian-vector products

∂c
∂ zi

(z) = ∇c(z)ei, i = 1 . . . ,N,

where ei denotes the ith unit vector, yielding the N
rows of the Jacobian using either the symbolic ap-
proach or the forward mode of AD N times. For the
forward mode of AD, the following theoretical bound
of the computational cost to evaluate the full Jacobian
can be shown [15]

OPS(∇c(z)) ≤ 2.5NOF ,

where OPS( f ) denotes the number of floating point
operations required to evaluate f . To reduce this op-
eration count, one may use the so-called vector for-
ward mode, where not only one derivative information
is propagated with the function evaluation but a bun-
dle of p directional derivatives. Hence, for a so-called
seed matrix Σ ∈ RN×p this variant of AD yields the
Jacobian-matrix product ∇c(z)Σ ∈ RN×p at a compu-
tational cost that can be bounded above by

OPS(∇c(z)Σ) ≤ (1+1.5p)OF ,

see [15]. Using Σ = IN as the identity matrix in RN×N ,
one obtains the full Jacobian with the vector forward
mode of AD at a computational cost bounded above
by (1 + 1.5N)OF instead of 2.5NOF when using the
standard forward mode of AD. This makes a signifi-
cant difference if N is large or the function evaluation
is costly.

4.2 Exploiting the structure of the Jacobian

The derivative computation described so far com-
pletely ignores any structure within the Jacobian ma-
trix. However, for the target applications of this re-
search project, the Jacobian of the equality constraints
has a block structure as shown in Fig. 2 for the Van der
Pol oscillator. When computing the full Jacobian using

Figure 2: Van der Pol oscillator: Jacobian structure
with 50 subintervals
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the approach as explained in the last subsection, a lot
of zero entries are computed, despite the fact that one
knows that these entries are zero. To exploit the inher-
ent structure of a sparse Jacobian, so-called compres-
sion techniques were developed. In the general case
all compression techniques rely on the following four-
step procedure: First determine the sparsity structure
of the Jacobian ∇c(z). Second, obtain a suitable seed
matrix Σ that defines a column partition of the Jaco-
bian using, for example, a specialized coloring on the
adjacency graph of the Jacobian. Then compute the
compressed Jacobian matrix B = ∇c(z)Σ. Finally, re-
cover the numerical values of the entries of ∇c(z) from
B. The sparsity structure may be known from the ap-
plication, as can be seen from the block structure in the
example of the Van der Pol oscillator, or determined
by a suitable variant of AD as explained in [15]. In
our applications the structure is known apriori so the
first two steps may be skipped and a seed matrix is
available directly from the block structure. Appropri-
ate coloring methods with the corresponding recovery
strategies for the general case are discussed for exam-
ple in [12]. The compressed Jacobian B is evaluated
using the vector forward mode of AD. For our appli-
cations, one may consider also the sparsity structure
within the blocks of the Jacobian to reduce the com-
putational cost even further. This will be the subject of
future work.

4.3 Exploiting the structure of the Hessian

Using a combination of the forward mode and the re-
verse mode of AD, one can compute Hessian-vector
products for a function F(z) for a computational cost
not larger than ten times OF [15]. To exploit this facil-
ity to the full extend, for the target applications of this
research project once more the sparsity of the Hessian
can be taken into account. This is due to the fact that
these derivative matrices have also a block structure as
illustrated again for the Van der Pol oscillator in Fig. 3.
The four step procedure explained above has to be
adapted appropriately for the computation of second-
order information in the general case. The sparsity
structure of the Hessian may be known from the ap-
plication, as is the case for the application discussed
here, or it may be determined by a suitable variant of
AD as described for example in [20]. For the general
case corresponding coloring approaches together with
suitable recovery strategies are presented in [13]. In
our applications the seed matrix is obtained directly
from the block structure known apriori.

Figure 3: Van der Pol oscillator: Hessian structure
with 50 subintervals

5 Implementation Details

The rough principle of the implementation is visual-
ized in figure 4. At the first step the optimizer re-

Figure 4: Implementation details
quires a sufficiently good starting point. In order to
keep the constraint error for equation (2.3) small the
method in OpenModelica creates a starting solution
based on a simulation run. The initial guess of the
control variable is set constant with the value of the
start attribute. Obviously, a good setting of the ini-
tial values of the control variables can accelerate the
NOCP solution process. Furthermore, this implemen-
tation supports the attribute nominal in Modelica for
scaling variables and constraints. The effects will be
presented in section 6.1.

Coupling of OpenModelica and ADOL-C

The AD tool ADOL-C [21] uses the technique of op-
erator overloading provided by the C++ standard to
implement a wide variety of AD-based techniques.
Within the research project described in this paper, the
C code generation of OpenModelica was adapted such
that ADOL-C can be used to evaluate the blocks in the
Jacobian of the equality constraints and the blocks of
the Hessian of the Lagrangian for a class of generic
test problems. That is, the block structure was ex-
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ploited manually. To compute the required derivative
information the standard drivers ja
obian(...) and hes-

sian(...) of ADOL-C were used. For the applications
considered here, the ja
obian(...) routine uses the vec-
tor forward mode as described above. The current cou-
pling of OpenModelica and ADOL-C allows a flexible
choice between the symbolic derivative computation
already implemented in OpenModelica and the AD-
based derivative computation provided by ADOL-C.
The structure of the coupling is illustrated in Fig. 5.

Figure 5: Structure of the coupling

6 Modelica Application and Perfor-
mance Measurements

6.1 Model formulation
Currently, the user can influence the solution con-
vergence by using native Modelica attributes like
nominal and start. It should be emphasized that
it is not the natural way to use start, since this at-
tribute is usually reserved for initial values at start time
for the simulation. Nevertheless, the initial trajectory
of all problem variables is provided by a simulation,
where all control variables are kept constant equal to
the value of the start attribute. The described for-
mulation of scaling and start trajectory will be shown
on a simple model, based on the Batch Reactor found
in [4]. The model was modified so that the states have
the nominal values 1010 and 10−10. The mathematical
formulation is given by

min
u(t)

x2(t f )

s.t.

x2(t) = 1010 · y2(t)
x1(t) = 10−10 · y1(t)

10−10 · ẏ1(t) = −
(

u(t)+
u(t)2

2

)
· x1(t)

1010 · ẏ2(t) = u(t) · x1(t)

u(t) ∈ [0, 5], y1(0) = 1, y2(0) = 0, t f = 1

which can easily be formulated in a Modelica/Optim-
ica representation:

optimization Bat
hRea
tor(

obje
tive = 
ost(finalTime),

finalTime = 1)

Real 
ost = -x2;

/*DAE Modeli
a */

/* states */

Real y1(start =1e10 ,

fixed=true , nominal =1e10);

Real y2(start=0,

fixed=true , nominal =1e-10);

/* tuner */

input Real u(min=0, max=5, start =1.0);

prote
ted

Real x1;

Real x2;

equation

x1 = 1e-10*y1;

x2 = 1e10*y2;

1e-10* der(y1) = -(u+u^2/2)* x1;

1e10*der(y2) = u*x1;

end Bat
hRea
tor;

When setting the correct values for the nominal at-
tribute the solution is calculated as expected. Setting
the nominal attribute to 1 yields the wrong result, nev-
ertheless the optimizer finishes without any error de-
tection.

6.2 Combined Cycle Power Plant

A more industry-relevant benchmark is a model of a
combined cycle power plant model, see figure 6. The
model contains equation-based implementations of the
thermodynamic functions for water and steam, which
in turn are used in the components corresponding to
pipes and the boiler. The model also contains compo-
nents for the economizer, the super heater, as well as
the gas and steam turbines. The model has one input,
10 states, and 131 equations. For additional details on
the model, see [6].

Figure 6: CombinedCycle display with OMEdit

Session 6C: Optimization Applications and Methods

DOI
10.3384/ECP140961017

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1023



0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
3

4

5

6

7

8

9
x 10

6
p
re

ss
u
re

 [
P

]

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.5

1

1.5

2

2.5

3
x 10

8

s
tr

e
s
s
 [
P

]

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

time [s]

lo
a

d
 [

n
o

rm
a

liz
e

d
]

Figure 7: Optimal start-up trajectories. The upper
curve shows the pressure in the evaporator, the mid-
dle curve shows the thermal stress in the steam turbine
shaft and the lower curve shows the control input rep-
resented by the load.

The optimization problem is set up to use 50 col-
location points that results in 1651 variables for the
NOCP and was solved on a PC with a 3.2GHz Intel(R)
Core(TM) i7. The algorithm requires an initial trajec-
tory of all problem variables, which is provided by a
simulation where the rate of change of the gas turbine
load is set to a constant value. The optimization re-
sults are shown in figure 7 and 8 and correspond with
the results that are discussed in detail in [6]. Here,
the trajectories are smoother, and the performance has
been improved substantially.

options
iteration time [s]

Jacobian Hessian
ADOL-C ADOL-C 39 2.29472
ADOL-C BFGS 48 0.86425
OMC BFGS 48 0.88558

Table 1: Time measurements of the solving process.

In table 1 the time measurements of the solving pro-
cess are summarized for different options of deriva-
tives calculation. One can see that the solution with
ADOL-C needs less iterations, which is a strong in-
dication that the solution is more accurate and more
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Figure 8: Optimal start-up trajectories. The upper
curve shows the live steam temperature, the middle
and low curves show the turbine rotor surface and
mean temperatures.

stable. This is even more important for stiff models.
However, the calculation of the Hessian with ADOL-
C need currently a factor of three more computational
time. Alternative approaches for a further improve-
ment of the runtime needed for the Hessian calculation
are the subject of current research.

7 Conclusions

This paper presents a newly developed tool chain
for solving nonlinear optimization control problems.
The underlying dynamic model formulation is done in
Modelica and Optimica. The demonstrated solution
method is based on orthogonal collocation methods,
whereby the first interval is specially treated in order to
consider control variables and their derivatives also at
the initial time point. The derivative information is de-
rived using the automatic differentiation tool ADOL-
C, which efficiently calculates the corresponding Jaco-
bian and Hessian matrices for the discretized optimiza-
tion problem. Special treatments of the matrices with
the focus on yielding optimal sparsity patterns with re-
spect to block and cyclic structure are performed. The
resulting optimization process proves to be stable and
efficient.
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