
Simulation of 2-dimensional flows in Modelica with the
Casacaded Digital Lattice Boltzmann Method

Thomas Bäuml Helmut Kühnelt
AIT Austrian Institute of Technology GmbH

Mobility Department, Electric Drive Technologies
Giefinggasse 2, 1210 Vienna, Austria

Keywords: Modelica, Cascaded Digital Lattice Boltz-
mann, 2-dimensional flows

Abstract

This paper deals with the implementation of a gen-
eral methodology for modeling two-dimensional fluid
flows in Modelica applying the Cascaded Digital Lat-
tice Boltzmann Method. This approach models fluid
flow as collective dynamics of fictitious particles on
the nodes of a regular lattice. The various elements
needed for simulation are described in Modelica and
generic test cases are set up. The method is able to
deal with simple scenarios where the powerful capa-
bilities of advanced CFD tools are not needed.

1 Introduction

Calculating the dynamics of fluid flows is an important
topic in the field of simulation. Common practice is
to simulate complex scenarios by utilizing Computa-
tional Fluid Dynamics (CFD). Despite its capability of
representing fluid flows in a very detailed way it has
the drawback of compatibility. Coupling with other
physical domain simulations is only possible by co-
simulation. In this contribution a general methodology
for modeling two-dimensional fluid flows in Modelica
is shown. Whereas in [1] the Navier-Stokes equations
are solved by a finite volume method, this work deals
with modeling them with a Lattice Boltzmann Method
(LBM).

2 Theory

The Lattice Boltzmann method is a relatively new
simulation technique for fluid systems that has at-
tracted interest as alternative to the discretization of

Figure 1: Lattice Boltzmann D2Q9 grid element

the Navier-Stokes equations. Instead of discretizing
the Navier-Stokes equations to solve the conservation
equations of macroscopic quantities (i.e., mass, mo-
mentum, and energy), LBM is a mesoscopic approach
for modeling macroscopic fluid dynamics based on the
Boltzmann kinetic equation which describes the sta-
tistical behavior of a non-equilibrium thermodynamic
system. In the LBM, the fluid motion is based on the
collective dynamics of fictitious particles on the nodes
of a regular lattice. The dynamics of these particles
is designed to obey the basic conservation laws en-
suring hydrodynamic behavior in the continuum limit.
The basic quantity is the particle distribution function
fi (~x, t) that represents the probability of finding a fluid
particle density i at a location~x and at a time t traveling
with a discrete speed ~ci.
The mass density ρ and the momentum density ρ~v are
given by:

ρ(~x, t) =
n

∑
i=0

fi (~x, t) (1)

ρ(~x, t)~v(~x, t) =
n

∑
i=0

fi (~x, t)~ci (2)

DOI
10.3384/ECP140961221

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1221

The motion of the particles is restricted to the node
positions of a regular lattice. In 2D, commonly a
9-speed, quadratic lattice (D2Q9) with mesh spac-
ing ∆x is applied, where the discrete velocities ~ci

connect lattice nodes to first and second neigh-
bors and which has a rest particle f0, see Figure
1. Here, cx = [0,1,0,−1,0,1,−1,−1,1]T and cy =
[0,0,1,0,−1,1,1,−1,−1]T .
The spatial and temporal evolution of the particle
distribution function is described by an explicit dis-
cretization of the Boltzmann equation, given by the
following equation:

fi (~x +~ci∆t, t + ∆t) =

fi (~x, t)−ω
(

fi (~x, t)− f eq
i (~x, t)

)
(3)

There, the left-hand side represents the molecular
free streaming from one lattice node to the other,
whereas the right-hand side represents the molecular
collisions via a single-time relaxation towards local
equilibrium f eq

i on a typical timescale τ = 1/ω. τ
is related to the macroscopic kinematic viscosity
ν = c2

s ∆t (τ−1/2), where cs = 1/
√

3 is the speed of
sound. Commonly ∆t(LB) = 1 in lattice units, thus
rendering the grid spacing ∆x(LB) = 1. Results in
physical units can be obtained by applying the scaling
u(phys) = u(LB)

√
3c(phys)

s .

The local equilibrium is typically a second-order ex-
pansion in the fluid velocity of a local Maxwell distri-
bution,

f eq
i = wi

[
ρ + 3~ci ·~v−

3
2
~v2 +

9
2

(~ci ·~v)2
]
, (4)

where wi is a set of weights normalized to unity. The
single-relaxation-time (SRT) LBM, (3), recovers the
weakly-compressible, athermal Navier-Stokes equa-
tions at low Mach numbers (Ma < 0.3) with second
order accuracy in space and time.
Nevertheless, the SRT-LBM method shows instabili-
ties when the viscosity is reduced to small values, in
order to reach high Reynolds numbers at low Mach
numbers. To enhance the stability, the multiple-
relaxation-times (MRT) collision operator was pro-
posed by [2, 3]. Instead of relaxing the particle distri-
bution functions themselves towards equilibrium, as in
the SRT-LBM, in the MRT-LBM, they are transformed
from velocity space into the corresponding moment
space, where the moments are relaxed towards their
equilibrium values. The moment space of the D2Q9
model has nine velocity moments. The conserved mo-
ments are the density (1) and the flow momentum

(2), the non-conserved moments include the energy,
the stress tensor components, the energy square and
the energy fluxes, for which different relaxation time
scales are specified in order to decouple physical from
higher order moments, thus improving the numerical
stability. The post collision particle distributions f new

i
of the MRT-LBM are then given by the following ex-
pression:

f new
i = fi + M−1S

(
mi−meq

i

)
, (5)

where M is the orthogonal transformation matrix, mi =
M fi are the moments of the system and S is a diagonal
matrix of the relaxation rates.
A specific MRT variant, adopted in this work, is
the Cascaded-Digital-Lattice-Boltzmann (CDLB) al-
gorithm [4], that allows virtually any viscosity value
without loss of stability within the low Mach num-
ber limit. It adopts central moments in the reference
frame moving with the macroscopic velocity and a
generalized local equilibrium which is a function of
both conserved and non-conserved hydrodynamic mo-
ments. The post collision distributions ~f new of the
CDLB are given by

~f new = ~f old + K ·~k (6)

where~k is the CDLB collision term and K is the or-
thogonal transformation matrix, that maps the mo-
ments into velocity space.

K =




1 0 0 −4 0 0 0 0 4
1 1 0 −1 1 0 0 2 −2
1 0 1 −1 −1 0 2 0 −2
1 −1 0 −1 1 0 0 −2 −2
1 0 −1 −1 −1 0 −2 0 −2
1 1 1 2 0 −1 −1 −1 1
1 −1 1 2 0 1 −1 1 1
1 −1 −1 2 0 −1 1 1 1
1 1 −1 2 0 1 1 −1 1




(7)
As the collision term of the CDLB is rather complex,
we refer to the original paper [4].
Using vector notation

K =
[
~K0, . . . , ~K8

]
, (8)

~f =




f0
...
f8


 , (9)

the conserved moments are expressed as

Simulation of 2-dimensional flows in Modelica with the Casacaded Digital Lattice Boltzmann Method

1222 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961221

ρ = ~f ·~K0,

ρvx = ~f ·~K1,

ρvy = ~f ·~K2.

(10)

3 Implementation

Lattice Boltzmann collision equations are usually
written in terms of post-collision distributions f c

i , i.e.,
fi (~x +~ci, t + 1) = f c

i (~x, t).
In this contribution a formulation where the pre-
collision distribution is described in terms of the post-
collision distribution at the respective neighbor node,
i.e., fi (~x, t) = pre(fi (~x, t))≡ f c

i (~x−~ci, t−1) is used.
The operator pre of Modelica makes this formulation
convenient [5].

3.1 Node element

All elements extend from a basic node element, the
partial node model PrtlNode_D2Q9. There, all pa-
rameters and variables like the transformation matrix,
weighting parameters etc. are defined. Furthermore
the internal particle distribution variables are defined
and initialization values are calculated. Collision and
streaming of particles is based on an equidistant time
step which is realized by a clock signal

clock := sample(dt, dt);

where dt is the width of one time step, taken equal to
one (in lattice units). The fi are time discrete quantities
changing their values only at event instants which are
triggered by the clock signal.
Each grid element has a rest particle and eight particles
that are streamed to the first (horizontal and vertical)
and second (diagonal) neighbors of the element. To
link the elements, two kinds of connectors are imple-
mented, a forward connector f_fwd and a backward
connector f_bwd. Each consists of a Real input vari-
able and a Real output variable to match its counter-
part.

connector f_fwd
input Real f_n;
output Real f_p;

end f_fwd;

connector f_bwd
output Real f_n;
input Real f_p;

end f_bwd;

Figure 2: Schematic grid of four D2Q9 node elements
including connections

Connectors are placed on the element models facing in
all eight streaming directions. Connectors 2, 3, 6 and
7 are facing forwards and connectors 4, 5, 8 and 9 are
facing backwards.
Various kinds of node elements extend from this par-
tial model. They are explained in more detail in sec-
tion 4.

3.2 Collision and streaming step

At every time step and at each grid element, the par-
ticle distributions are received, collided and propa-
gated. The receiving and propagating step are gener-
ally known as streaming.
In a conventionally implemented LBM, streaming af-
fects only ports of the same direction. This means,
a particle distribution with velocity~c2 exits port 2 and
enters port 2 of the adjacent element. In Modelica, due
to the connector concept, the case is slightly different.
Port 2 of a grid element is connected to port 4 of the
adjacent element, port 4 is connected to port 2 of the
next element, and so on. To establish a correct stream-
ing behavior the input, which holds the post-collision
value at the last time step, must be mapped to the re-
spective output, e.g., port 4 has to be mapped to port
2, port 2 has to be mapped to port 4. Then the particle
distributions are collided. Then the post-collision val-
ues are written into the output variable of the respec-
tive connector. Propagation to the neighboring grid
elements is done automatically by the connector, no
additional commands are needed.

Poster Session

DOI
10.3384/ECP140961221

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1223

when clock then
// mapping
fold[1] := pre(f1);
fold[2] := pre(f4.f_p);
fold[3] := pre(f5.f_p);
fold[4] := pre(f2.f_n);
...

// collision
fnew := ... fold;

// output
f1 := fnew[1];
f2.f_p := fnew[2];
f3.f_p := fnew[3];
f4.f_n := fnew[4];
...

end when;

3.3 Mesh and connections – setting up the
computational domain

In the example model, the 2D-flow model has to be
described and the computational domain set up. Each
model consists of sources, fluid nodes and boundary
conditions. Two ways are possible to build up the
model. The first is to build the model by dragging and
dropping elements to the workspace and drawing con-
nections by hand. Because the number of elements
may be quite high and every element needs eight con-
nects to its neighbours, the effort to set the model up
like this is quite high. A more convenient method is
proposed here. Providing the matrix nodeType that
represents the LB discretized computational domain,
all connections are generated automatically via nested
loops.
The matrix can easily be set up in e.g. Microsoft Excel
and then imported to the simulation example. A sim-
ple example of a two-dimensional duct model is shown
below.

parameter Integer nodeType[:,:]=
{{2,2,2,2,2,2,2,2,2},
{3,1,1,1,1,1,1,1,4},
{3,1,1,1,1,1,1,1,4},
{3,1,1,1,1,1,1,1,4},
{3,1,1,1,1,1,1,1,4},
{2,2,2,2,2,2,2,2,2}};

...
CDLB.D2Q9 node[:,:](nodeType=nodeType,...);

The parameter nodeType is then propagated to the
element CDLB.D2Q9 which acts as generalized ele-
ment representing all node types in conditional defini-
tion.

model D2Q9
...
CDLB.FluidNode fn if nodeType == 1;

CDLB.BounceBackNode bn if nodeType == 2;
CDLB.VelocityNode vn if nodeType == 3;
CDLB.DensityNode dn if nodeType == 4;
...

end model;

The user only has to define the matrix, all connections
are established automatically. They are defined in mul-
tiple loops to interconnect every element with its eight
neighbors. As example, the connections for connector
4 are outlined here:

// connect row 2:end and col 2:end
for i in 2:1:nrow loop

for j in 2:1:ncol loop
connect(node[i,j].f4,node[i,j-1].f2);

end for;
end for;

// connect row 1 and col 2:end
for j in 2:1:ncol loop

connect(node[1,j].f4,node[1,j-1].f2);
end for;

// connect col 1 to col end
for i in 1:1:nrow loop

connect(node[i,1].f4,node[i,end].f2);
end for;

These equations are repeated for all other connectors
and are omitted here for sake of brevity.

4 Elements

4.1 FluidElement

The fluid element implements the collision, (6). To
speedup symbolic pre-processing and compilation
time, this is encapsulated in a function. To avoid re-
flections at the in- and outflow boundaries, sponge
zones are implemented. There the relaxation factor τ is
gradually increased to 1, thus driving the fluid towards
its equilibrium state at the boundary.

4.2 BoundaryElement

To implement a solid, non-slip boundary condition a
local bounce-back rule is applied on the solid node ~xs:

f c
i′ (~xs, t) = fi (~xs, t) (11)

where i′ denotes the link with reversed velocity of i,
i.e., ~ci′ =~ci, pointing into the fluid. Incoming distri-
butions functions at a wall node are reflected back to
the original fluid nodes, with the direction rotated by
π. The “bounce-back on the node” is purely local, thus
being implementable in the current concept, but it has

Simulation of 2-dimensional flows in Modelica with the Casacaded Digital Lattice Boltzmann Method

1224 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961221

been proven to be only first-order accurate in time and
space.
Shifting the solid wall half-way between the two
nodes, leads to the “bounce-back on the link” which
is of second order accuracy:

fi′ (~xl, t + 1) = f c
i (~xl, t) (12)

where~xl is a fluid node next to the solid boundary and
f c is the post-collision value before propagation. Un-
fortunately it is not implementable in the current con-
text, as each node element in Modelica cannot access
its neighbors.

4.3 DirichletElement

Dirichlet boundary conditions can be set up based on
the idea of bounce-back of the non-equilibrium part,
as proposed in [6]. As an example, at a flow bound-
ary having a normal vector into the fluid in positive x-
direction, i.e., f2, f6, f9 pointing into the fluid, these
distribution functions are unknown after streaming.
Equations (1) and (2) can be used to reconstruct the
unknown distributions.
At a velocity boundary node, after streaming
f1, f3, f4, f5, f7, f8 are known and vx,vy are specified.
f2, f6, f9 and ρ need to be determined. Equations (1)
and (2) yield three equations. In order to close the sys-
tem, it is assumed that it is admissible to bounce-back
of the non-equilibrium part of the particle distribution
normal to the boundary, i.e., f neq

i′ = f neq
i ≡ fi′− f eq

i′ =
fi− f eq

i . For a Dirichlet element pointing in positive
x-direction this gives

rho := 1/(1-vx) * ((fo[1]+fo[3]+fo[5]) +
+ 2 * (fo[4]+fo[7]+fo[8]));

fo[2] := fo[4] + 2/3*rho*vx;
fo[6] := fo[8] + 1/2*(fo[5] - fo[3])

+ 1/2*rho*vy + 1/6*rho*vx;
fo[9] := fo[7] + 1/2*(fo[3] - fo[5])

- 1/2*rho*vy + 1/6*rho*vx;

For a known inlet velocity vin,x, this system serves as
velocity inlet, CDLB.VelocityNode, or can be re-
arranged in terms of known density, ρ = ρin, into a
density inlet, CDLB.DensityNode.

4.4 Initial Conditions

At start of the simulation run, a flow at rest is assumed,
setting the distribution functions to their equilibrium
value.

Figure 3: Profile of the magnitude of the flow velocity
in lattice units in a fluid domain with one solid node
at one quarter of the domain length and vertically cen-
tered. A periodic vortex occurs forming a von Karman
vortex.

Figure 4: Profile of the magnitude of the flow velocity
in lattice units in a fluid domain with an orifice at one
quarter of the domain length. A jet is created which is
amplified by aerodynamic effects.

Figure 5: Profile of the vorticity in lattice units in a
fluid domain with an orifice at one quarter of the do-
main length. A jet is created which is amplified by
aerodynamic effects.

5 Test cases and results

5.1 Flow past a cylinder

The first test case deals with the flow around a cylin-
der in a fluid stream, which is formed by one solid
node. It is positioned at approximately one quarter of
the domain length and vertically centered in the com-
putational domain. The nodes at the upper and lower
boundaries are also fluid nodes. As all boundaries are
interconnected with each other, this constitutes peri-
odic flow boundary conditions. The computational do-
main consists of 258 x 30 grid nodes, leading to 570k
equations, which is close to the maximum size man-
ageable in Dymola.
Periodic vortex at the cylinder occurs forming a von
Karman vortex street, see Figure 3 for a snapshot
showing the velocity magnitude in lattice units. In or-
der to obtain a high Reynolds number, the relaxation
factor τ was set to 1/2, yielding a very low kinematic
viscosity, which is only determined by numerical pre-
cision of the solver.

5.2 Flow through an orifice

The second test case is a flow through an orifice where
a jet is formed. The orifice is modeled as solid with

Poster Session

DOI
10.3384/ECP140961221

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1225

non-slip walls and is positioned in a duct with slip-
walls at one quarter of the domain length. The compu-
tational domain consists of 258 x 30 grid nodes, lead-
ing to 570k equations.
Figures 4 and 5 show snapshots of the velocity mag-
nitude and the vorticity in lattice units. Velocity per-
turbations at the flow inlet trigger initial perturbations
in the jet shear layers which are further amplified by
aerodynamic effects due to the Kelvin-Helmholtz in-
stabilities until the jet breaks up into discrete vortices.

6 Conclusions

An approach for simulating fluid flow with the Cas-
caded Digital Lattice Boltzmann method is proposed.
With this approach fluid flow problems can be ad-
dressed in a multi physical modeling language like
Modelica. The method works for small scenarios but
reaches the boundaries of efficient simulation quickly.
Nevertheless, the approach works for 2D flows and can
be extended to 3D flows easily.

References

[1] M. Bonvini, M.; Popovac, “Fluid flow modelling
with Modelica,” Proceedings of the 7th Interna-
tional Conference on Mathematical Modelling, Vi-
enna, Austria, 2012.

[2] D. D’Humieres, “Generalized lattice-Boltzmann
equations,” Rarefied Gas Dynamics: Theory and
Simulations, vol. 159, pp. 450–458, 1992.

[3] P. Lallemand and L.-S. Luo, “Theory of the lat-
tice Boltzmann method: Dispersion, dissipation,
isotropy, Galilean invariance, and stability,” Phys.
Rev. E, vol. 61, pp. 6546–6562, Jun 2000.

[4] M. Geier, J. G. Korvink, and A. Greiner, “Cas-
caded digital lattice Boltzmann automata for high
Reynolds number flow,” PHYSICAL REVIEW E
73, 2006.

[5] J. Brown, “Computational fluid dynamics in an
equation-based, acausal modeling environment,”
Master’s thesis, Atlanta, Ga. : Georgia Institute
of Technology, 2010.

[6] Q. Zou and X. He, “On pressure and veloc-
ity boundary conditions for the lattice Boltzmann
BGK model,” Physics of Fluids, vol. 9, no. 6, pp.
1591–1598, Jun. 1997.

Simulation of 2-dimensional flows in Modelica with the Casacaded Digital Lattice Boltzmann Method

1226 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961221

