
Statecharts as a Means to Control Plant Models in LMS
Imagine.Lab AMESim

Vincent Berthoux Sébastien Furic Loïc Wagner
{vincent.berthoux,sebastien.furic,loic.wagner}@lmsintl.com

LMS Imagine S.A.
7 place des Minimes

42300 Roanne, France

Abstract

This article introduces a new feature of LMS Imag-
ine.Lab AMESim that allows users to define plant
model controllers. We start by reviewing some chal-
lenging aspects of hybrid state machine handling in
asynchronous Modelica-based physical simulation en-
vironments. We then describe the implementation
available in AMESim, focusing on user interaction and
especially static error checking and reporting.

Keywords: Statechart; Modelica; LMS Imagine.Lab
AMESim

1 Background

Models of physical systems can be built out of
equation-based entities (submodels) whose interaction
through a connection structure yield the behavior un-
der consideration. This way of defining physical mod-
els puts emphasis on technological and/or phenomeno-
logical aspects of modeling: one typically defines en-
tities representing fundamental phenomena (e.g., en-
ergy storage), or entities representing technological as-
semblies (e.g., a cooling system), or any combination
of both, as modeling ‘bricks’. However, this is not
the only nor always the most appropriate way of defin-
ing models. For instance, one sometimes prefers to
put emphasis on states and transitions between states.
This is typically the case when building controllers
used to drive models. These controllers feature op-
erating modes that can be conveniently represented as
states of a certain finite state machine (consider for in-
stance a controller having modes start, run and stop
with transitions between these states indicating possi-
ble mode transitions).

To make the picture complete however, real-world
controllers actually also feature state variables, lead-
ing to infinite (often uncountable) hybrid state ma-

chines. Nevertheless, the state-and-transition view is
still the preferred one in most situations: this obser-
vation motivated the introduction of a new user in-
terface feature in AMESim, allowing users to define
controllers by means of a finite set of states and tran-
sitions, yet offering state variables and equations as a
means to specify not only actions to be performed dur-
ing state transition but also constraints to be verified in
a given state.

Figure 1 shows a simple counter model expressed
in the new state-and-transition view, which has been
highly inspired by Harel’s statechart language [1]. The
corresponding user interface has been built on top of
AMESim’s Modelica translation chain to benefit from
its automatic code generation feature.

/ counter := 0;
reset_count := 0

e / counter := counter + 1

e [counter == 10] / counter := 0;
reset_count := reset_count + 1

2

1

resetcount

e / counter := counter + 1

Figure 1: A simple counter statechart

2 Why statecharts?

Variants of Harel’s statecharts are today by all means
one of the most popular approaches used to describe
state machines in Control tools. On the other hand,
LMS Imagine.Lab AMESim, which is a Physical Sys-
tem Modeling tool, used to favor the technological and
phenomenological aspects of models—which are of-
ten the most natural ones in its application area. How-
ever, models do not necessarily classify as “pure con-
trol” or “pure physical”: some of them involve a mix

DOI
10.3384/ECP140961237

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1237



of physical and control aspects (e.g., aircraft mod-
els including aircraft missions, vehicle models includ-
ing driving manoeuvers, etc.). If we want to handle
such models in a simulation tool, we basically have
two options: either we choose a unified representa-
tion, or we offer the ability to work with both the
state-and-transition view and the technological-and-
phenomenological view—and then possibly translate
heterogeneous parts to a common representation un-
der the hood. In the following we explain the reasons
that have driven the choice made in AMESim, whose
last release implements the second option.

2.1 Control in AMESim by means of native
components

Early attempts to mix control with physics in AMESim
naturally made use of the versatile native component
concept. An AMESim component can be seen as a
generic “basic brick” having one or several implemen-
tations called submodels, each of them specifying the
causality attached to each of its port signals. In this
paradigm, there is no fundamental difference between
control signals and physical signals (i.e., signals held
by power variables in corresponding bond graph mod-
els): it follows that native submodels can be used to
implement control. However, while monolithic con-
trollers (i.e., implemented as single submodels) can be
made reasonably safe,1 controllers built out of smaller
bricks suffer from two weaknesses inherited from the
submodel composition operation:

• the resulting flow of events is not synchronized
and

• some control flow defects (resulting, for instance,
in blocking models) cannot be detected at com-
pile time.

As a consequence of the former, cascades of events
are typical of models that deal with discontinuous—
not necessarily piece-wise constant—signals. For
instance, if a submodel’s job consists in convert-
ing its real piece-wise constant input to an integer,
it will trigger a fresh event each time its output
changes,2 even if in this case—the input is piece-wise
constant—we know that instants corresponding to out-
put changes form a subset of those corresponding to

1We’ll come back to them in subsequent sections when talking
about automatic code generation for controllers.

2This is necessary in order to notify a change to possible lis-
tener submodels.

input changes.3 This has unfortunate consequences
over resulting models: for instance, it is not possi-
ble to know, when a bunch of events fire, whether
these events trace back to the same cause or not. Con-
sider our real-to-integer converter example: since each
jump in the output signal slope triggers a fresh event
in disregard of the reason that made the jump neces-
sary (actually another jump, so another event) we end
up having to deal with two simultaneous events.4 Even
if consequences over performance are generally negli-
gible, models have to figure out someway that, given
a bunch of events, some of them are “duplicates” of
others to avoid treating each of them as independent
events, yielding wrong results in some circumstances
(see [2] for concrete examples of such wrong mod-
els). So to avoid practical synchronous issues, some
form of collaboration between submodels—a design
pattern—must be implemented by library developers
and, moreover, understood and correctly used by end-
users. Indeed, this collaboration scheme is unknown
from the modeling tool which is then of no help to
track down misuses of the submodels. This is arguably
too much to require from both library developers and
end-users, who should ideally focus on physics and
control, rather than on low-level implementation de-
tails.

Also, it would be desirable to be able to statically
(i.e., before execution) catch modeling errors resulting
in non-deterministic models and fragile models.5 Alas,
the technological-and-phenomenological approach is
again of no help here: in this paradigm, such mod-
eling errors can only be detected—if they ever are—
at runtime. As a consequence, development of mod-
els involving many discrete states can become cum-
bersome: it requires extensive testing to gain confi-
dence in the correctness of the design, and whenever
an error is detected, the location of the faulty sub-
models can be quite challenging. On the other hand,
modeling with discrete states is precisely where the
state-and-transition approach shines: when the state-
and-transition graph of (part of) a model is explicit, it
is possible to detect at compilation time, as we shall
explain in subsequent sections, non-deterministic and

3In synchronous language terminology, we say that the clock
corresponding to output changes is a subclock of the clock corre-
sponding to input changes.

4This example will be further discussed in subsection 4.1.
5Fragile models are models whose correct execution relies on

a property that escapes the automatic checker’s proof capabilities.
Some of those models are actually correct, but some others are
not: we prefer to reject all suspicious models, forcing users to
disambiguate correct ones (disambiguation is often easy) rather
than accepting wrong models that may be hard to debug.

Statecharts as a Means to Control Plant Models in LMS Imagine.Lab AMESim

1238 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961237



fragile patterns that may lead to runtime errors.
Clearly, the technological-and-phenomenological

approach, despite its versatility, reaches its limits when
complex discrete state submodels such as those in-
volved in Control applications come into play. This
observation has motivated the extension of AMESim’s
submodel description capabilities, which now feature
a state-and-transition perspective.

2.2 Statecharts: an intuitive yet expressive
graphical language

The general adoption of (variants of) statecharts in
Control tools is due to their ability to concisely ex-
press complex finite state machines, making them rea-
sonably understandable by humans.

Conciseness is mainly achieved thanks to the nice
concept of composite state, which can be seen, at least
in the original proposal by Harel [1], as a kind of
“pseudo-abstraction” in the sense that this construct
effectively allows some details of the equivalent, un-
factored, flat machine to be abstracted away, but it is
nevertheless necessary to reveal some contents to al-
low inner transitions. Statecharts also feature discrete
state variables (updated in actions), which makes them
suitable to describe even infinite state machines. Ac-
tually, Harel’s statecharts come with many appealing
features, so they constitute a very good starting point
for our targeted applications. However, since they
are historically strongly rooted in the discrete control
world, they lack the concept of continuous state vari-
able. So, like many others did before us, we have
extended statecharts to support hybrid modeling. We
have designed this extension so that it remains sim-
ple and intuitive, yet powerful enough to handle many
practical applications.

We will review in the next section some theoreti-
cal aspects of timed systems that have guided integra-
tion of statechart modeling capabilities in AMESim.
We will then dive in important technical achievements
such as validation and automatic code generation be-
fore presenting the final result from an end-user point
of view.

3 A variant of the statechart lan-
guage

The graphical language implemented in AMESim is
very similar to the original statechart language: a stat-
echart is essentially a set of states represented with
rectangular boxes (labelled count and reset in the

example of Figure 1) and a set of possible state transi-
tions represented with labelled arrows.

A transition can be associated with a trigger, a
guard and actions. A transition is taken when an event
corresponding to its trigger occurs if its guard evalu-
ates to true. In that case, the actions—which are state
variable assignments—are executed. For instance, the
transition from count to reset in Figure 1 labelled

e [counter == 10] /
counter := 0;
reset_count := reset_count + 1

means that when an event associated with e occurs
while count is active and the state variable counter
is equal 10, a transition from count to reset is taken,
counter is set to 0 and reset_count is incremented.

Triggers, or event generators, are defined at state-
chart creation time by boolean expressions that create
events on their rising edges.

In addition to these general features, a statechart
can be augmented with inputs from and outputs to
AMESim. An output can either refer to a state vari-
able, i.e. a discrete variable, or to a continuous signal
controlled by state activations.

4 Theoretical aspects of statecharts
integration in AMESim

When Modelica-based tools simulate the dynamic be-
havior of a system, they actually try to find a reason-
able approximation of the solution of a system of equa-
tions that is supposed to capture the behavior of in-
terest. This system of equations generalizes the so-
called state space representation: it roughly consists
in inputs, outputs and internal variables constrained
by sets of equations whose (possibly dynamic) activa-
tion determine the trajectories of the model. This form
constitutes the actual denotation of the corresponding
desugared program6 from which tools need to deduce
the desired approximation. Now, given a desugared
program, how is this approximation actually obtained?
Of course, at some point, it depends on design choices
made in the simulation tool.7 But, given a common
model description language like Modelica, any imple-
mentation is supposed to follow the same operational
semantics which state how to compute the solution—
not an approximation—of any well-behaved program:

6“Flat program” in Modelica.
7A tool may favor one or several classes of problems (e.g.,

marginally stable problems, discrete problems, etc.). This con-
tributes to the tool’s added value.

Poster Session

DOI
10.3384/ECP140961237

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1239



this is somewhat the “reference implementation”—
although a “virtual” one8—of a correct interpreter of
the modeling language. Unfortunately, in practice,
defining sound operational semantics for a physical
system modeling language is such a huge work that,
for most languages available today (including Model-
ica), only informal semantics (i.e., given in written hu-
man language) are available. Consequently, many in-
consistencies simply cannot be spotted, because, con-
trary to formal descriptions, informal descriptions do
not easily allow reasoning about the semantic model
itself. This partly explains why, as pointed out in, e.g.,
[3], physical simulation tools experience difficulties in
correctly handling some hybrid problems.

In AMESim, we had to take this fact into consid-
eration when designing the new state-and-transition
mode (which interacts with continuous behavior) so
that we practically avoid most issues encountered in
an unchecked implementation.

In the following subsections, the issues involved
with coupling statecharts with AMESim models and
the design choices made to circumvent them are dis-
cussed.

4.1 Synchrony vs. Simultaneity issues

Statecharts describe systems that react to the environ-
ment, i.e., they respond to external triggers by exe-
cuting state transitions according to their internal state
and their inputs. In other words, a statechart merely
describes a function that computes a new internal state
from a previous state and a set of inputs while the envi-
ronment is responsible for providing the inputs and for
deciding when this function should be used to compute
a new state.

A first source of non-determinism originates from
the fact that the execution of a statechart can some-
time be triggered by several different event sources
at the same time. The issue is then to tell if the cor-
responding events are actually one and the same, i.e.
they are dependent, or synchronous, events, or if they
are unrelated, i.e., asynchronous, and actually occur in
sequence but just seem to be simultaneous due to nu-
merical approximations.

As an example, let us consider the simple statechart
of Figure 2.

It simply says that

• if the event e1 occurs while in state s0, the state-
chart transitions from s0 to s1,

8This guarantees implementation independence.

s0

 

s1

 e2 e1

Figure 2: A simple statechart

• if the event e2 occurs while in state s1, the state-
chart transitions from s1 to s0 and

• the statechart starts with s0 being active.

If the statechart is executed because only one of e1
or e2 has occurred, the computation of the new state is
quite straightforward. But what should happen if, for
example, s0 is active and both e1 and e2 are sensed
simultaneously? Different interpretations are possible.

A first interpretation might be to assume that events
that occur simultaneously are exactly the same, i.e. that
they originate from the same primary external source
and should consequently only be taken into account
once. In the example this means that the new active
state should be s1.

Another interpretation could be that e1 and e2 are
independent and that the fact that they appear simul-
taneous is just a numerical artefact. In that case, the
statechart would need to be executed twice according
to the sequence in which e1 and e2 have occurred. If
e1 happens first, s1 would become the active state af-
ter the first execution and s0 would again be after the
second one. It should be noted that in this interpreta-
tion it is not enough to know that the events are inde-
pendent: the order in which events occur needs to be
determined as well.

Both interpretations can be perfectly valid depend-
ing on the external context. Let us reuse examples sim-
ilar to those presented in [2] to illustrate this fact.

Let us assume that the events e1 and e2 occur when
some external signals i1 and i2 respectively become
larger or equal to zero.

Figure 3 shows an AMESim model where the same
signal source is connected to both i1 and i2. The
source defines a piece-wise constant signal that is −1
when t < 1 and 1 when t >= 1. As a result, events
e1 and e2 happen simultaneously when t = 1. In that

Statecharts as a Means to Control Plant Models in LMS Imagine.Lab AMESim

1240 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961237



case, it would make sense to consider that e1 and e2
refer to the same events and to adopt the corresponding
interpretation in the statechart.

Figure 3: Dependent event sources

Let’s now consider the model shown in Figure 4.
The same statechart model is fed the outputs of posi-
tion sensors attached to two identical mass with vis-
cous friction models. If the velocities and positions
of the masses are initialized to the same values, both
positions will become non-negative simultaneously (if
they ever do). However, it does not make sense to con-
sider that these events are related as the models that
generate them have nothing to do with each other. It
seems much more natural to take them into account
one after the other as if they had been sensed in se-
quence. The order of this sequence is not that impor-
tant here as there is absolutely no reason to favor one
model over the other. Actually, in real life, two seem-
ingly identical systems submitted to the same inputs
will always behave slightly differently at some scale
because of uncontrolled parameters.

Figure 4: Independent event sources

A third way of using the statechart of Figure 2 is
presented in Figure 5. This model illustrates the idea
expressed in Subsection 2.1 about cascading events: a
piece-wise constant signal is fed to i1 while its inte-
ger part is fed to i2. Both inputs cross zero at the same
time, generating simultaneous events. One could con-
sider that they are the same events, as in the model in
Figure 3, but one could also consider that e2 is a con-
sequence of e1 and should then be handled after e1.

Figure 5: Independent event sources where order mat-
ters

The examples presented above show that very dif-
ferent meanings can be given to simultaneous events.
Unfortunately, a continuous-time modeling environ-
ment is unable to give any insight about which is the
expected one, the information being simply unavail-
able. This shortcoming is particularly critical when
executing a statechart as making wrong decisions in a
discrete model can radically alter the course of a sim-
ulation compared to continuous-time detailed physi-
cal models where energy conservation principles make
models more robust with regard to non-determinism.

4.2 Observability of state transitions

In AMESim, just like in Modelica, discrete states can
only be assigned once when a continuous-time event
occurs.9 This makes up another obstacle in the way
of coupling a statechart with a continuous-time model.
Indeed, a statechart may need to execute several transi-
tions without increasing the elapsed time in the model,
thus updating its state multiple times as a response to
a unique continuous-time event.

Let us consider for example the statechart of Fig-
ure 6 featuring an input i, a discrete real output o and
an event generator e. The statechart starts in state s0.
When e generates an event, state s1 is entered and o is
set to 1.0. Besides, if the guard i > 0.0 is satisfied
at that time, s2 directly becomes the new state and o
is set to 2.0, without awaiting a new event.

This clearly contradicts the assumptions stated
above. In Modelica, for instance, something like the
partial Modelica code in Listing 1 would need to be
written, which is invalid as the second when clause in-
troduces an algebraic loop involving s1 and because
s1 and o are potentially constrained by two equations
at once when e occurs.

Listing 1: Invalid Modelica code for the statechart of

9The values of certain states can actually be changed by a Mod-
elica simulator as part of a solving process, but these intermediate
values should never be relied upon in a model.

Poster Session

DOI
10.3384/ECP140961237

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1241



s0

 / o := 0.0

s2

s1

 [i > 0.0] / o := 2.0

 e / o := 1.0

Figure 6: A statechart involving a potential double as-
signment

Figure 6
when initial() then

s0 = true;
s1 = false;
s2 = false;
o = 0.0;

elsewhen e then
if pre(s0) then

s0 = false;
s1 = true;
o = 1.0;

end if;
end when;

// when state s1 is entered...
when s1 then

if i > 0.0 then
s1 = false;
s2 = true;
o = 2.0;

end if;
end when;

One could, of course, think of working around these
obstacles by “inlining” the intermediate transition, i.e.
by rewriting the statechart with a direct transition from
0 to s2 as done in Listing 2.

Listing 2: Modelica code for the statechart of Figure 6
using “inlined” transitions

when initial() then
s0 = true;
s1 = false;
s2 = false;
o = 0.0;

elsewhen e then
if pre(s0) then

if i > 0.0 then
s0 = false;
s2 = true;

o = 2.0;
else

s0 = false;
s1 = true;
o = 1.0;

end if;
end if;

end when;

This is valid Modelica, but the behavior is not ex-
actly the expected one. Indeed, from an external point
of view, o jumps from 0.0 to 2.0 directly without ever
taking the 1.0 value. This may seem harmless for one
used to physical continuous-time modeling, but what
if this output was fed to another discrete part, e.g. an-
other statechart, that relies on it to significantly alter
its behavior? Figure 7 shows an AMESim model that
depends on the intermediate value being taken. Event
e is fired when the input becomes positive which at
the same time satisfies the guard i > 0.0. The output
is connected to a discrete subsystem that increments a
counter when it gets exactly equal to 1.0. This means
of course that the counter will only be incremented if
the intermediate value is properly observed.

Figure 7: A model exposing observability issues

It should be noted that using Modelica algorithms
to rewrite the model as shown in Listing 3 exposes the
same issue as o is only equal to 1.0 during an inter-
mediate step inside the algorithm.

Listing 3: Modelica code for the statechart of Figure 6
using an algorithm

algorithm
when initial() then

s0 := true;
s1 := false;
s2 := false;
o := 0.0;

elsewhen e then
if pre(s0) then

s0 := false;
s1 := true;
o := 1.0;

end if;
end when;

// when state s1 is entered...

Statecharts as a Means to Control Plant Models in LMS Imagine.Lab AMESim

1242 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961237



when s1 then
if i > 0.0 then

s1 := false;
s2 := true;
o := 2.0;

end if;
end when;

4.3 Design choices

When designing the statechart extension to AMESim,
the main focus was placed on the robustness, reliabil-
ity and usability of the solution. That is why special
care was taken to avoid as much as possible the issues
presented above. This necessarily lead to additional
rules in our variant of the statechart language that will
be justified in this section.

First, it was decided to avoid the simultaneity issues
described in Subsection 4.1 altogether by making sure
that the execution of a statechart is always indepen-
dent of the interpretation given to simultaneous events.
This means that if any two events occur at the same
time, assuming that they are synchronous or asyn-
chronous should not change the upcoming computa-
tion. In the language described in this paper, events
triggering a statechart simultaneously are simply for-
bidden.10

This rule is partially enforced by the statechart en-
vironment of AMESim by statically checking that a
transition cannot generate an event that would conflict
with the one that triggered the transition in the first
place. What is more, simultaneous external events are
detected at runtime and result in aborting the simula-
tion. This guarantees the deterministic execution of
a statechart provided that no dependent event sources
are created by directly connecting—without inserting
a continuous or discrete state variable as a buffer—an
output to an input.11

One may argue that another solution might have
been to stick to one interpretation anytime events occur
simultaneously. But what if the only interpretation that
makes sense is precisely the other one like in the model
of Figure 4, where assuming that the events are depen-
dent is clearly not expected? That is why signaling am-
biguous situations was favored over making arbitrary
choices behind the scene. As a side note, the “indepen-
dent events” interpretation brings its lot of additional
questions. How can the ordering of events be deter-
mined? How can several events be processed without

10This rule may be made less restrictive in the future if it turns
out that it significantly enlarges the range of valid models.

11Avoiding this is the responsibility of the environment and can-
not be enforced locally in a statechart.

increasing the continuous time and without encounter-
ing the issues of Subsection 4.2?12

Similarly, to avoid the observability issues pre-
sented in Subsection 4.2, the decision was made to
enforce that the effect of every taken transition can
always be observed from outside a statechart. This
means that an output cannot be set more than once dur-
ing one execution of a statechart. This property can be
checked statically assuming that the first rule about si-
multaneous events is enforced.

5 Practical validation of statecharts

To ensure the safe execution of a statechart definition,
the fulfilment of the aforementioned constraints has to
be statically checked before generating code. Beside
trivial checks such as making sure that the state ma-
chine contains a unique initial state or that at least one
event generator is present (to ensure time progression),
a few non-trivial checks have also been implemented.
These checks are presented hereafter.

5.1 Transition expression checking

Writing correct transition expressions is error-prone:
as in any other textual language, one can easily make
syntax and semantic errors such as referring to a non-
existent variable or event generator, or combine in-
compatible expressions.

count

 / my_speed := 0

 e / my_speed := my_sped + 1

Figure 8: A statechart with a typo in an identifier

In order to avoid runtime errors due to unknown
identifiers, each input, output and event must be de-
clared before use. All local variables have to be initial-
ized, and thus implicitly declared, on the initial tran-
sition of a statechart. These rules imply that all vari-
ables are known at compile time and allow rejecting
the statechart of Figure 8 where my_sped is not a valid
variable name.

12For instance, a state transition may change an output that in
turn invalidates an event that has already been placed in the pro-
cessing queue.

Poster Session

DOI
10.3384/ECP140961237

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1243



Avoiding element misuse requires a more complex
solution: a static type system. This type system was
designed to avoid the need for user provided type an-
notations, which would make writing transition ex-
pressions cumbersome. The Hindley/Damas/Milner
type inference algorithm [4, 5] is used to type check
all transitions without type annotations.

The basic idea of type inference is to traverse all
expressions of a program to gather various typing con-
straints and correlations and then to resolve all those
constraints in a second pass, thus attributing their final
types to variables.

Let us consider for example the following expres-
sion

e / v := 2 + v; x := sin(v) + x

and the primitive type definitions below.

sin Real→ Real
2 ∀α ∈ {Integer,Real},α
(+) ∀α ∈ {Integer,Real},α → α → α

The first step to perform type inference on the ex-
ample expression is to attribute free type variables to
the variables in use, i.e. v will get type β , x type δ and
e type γ .

As e is used in the trigger section of the expression,
the typer can deduce the constraint γ = Event, which
gives the final type for e: Event.

In the first action, the type of the (+) operator im-
plies that both its operands must have the same type,
which can be either Integer or Real. This means that
the type of variable v must satisfy the following con-
straint:

β ∈ {Integer,Real}.

On the other hand, the type constraint for 2 matches
exactly the one for the operands of (+) and can then
be omitted in the next equivalences as it brings no ad-
ditional information.

Similarly, the use of the (+) operator in the second
action yields the following constraint:

δ ∈ {Integer,Real}.

The presence of the sin function generates tighter
constraints, as it bounds the types of the input and out-
put variables, yielding:

β = Real,
δ = Real.

Gathering all the inequalities together gives the fol-
lowing final typing equation system:

β = Real,β ∈ {Integer,Real},
δ = Real,δ ∈ {Integer,Real}.

It can then be simplified to deduce that v has type
Real and that x also has type Real. An impossibility to
simplify type equations, like obtaining Integer = Real
would have meant a type error which should be re-
ported to the user.

5.2 Activation chain analysis

Transitions that have no trigger section do not neces-
sarily stop the execution of a statechart; they are taken
as far as their guards allow, without waiting for another
event.

s0 s1

s2s3

e1 [x >= 0]

[x >= 0]

[x >= 0]

/ x := 0

Figure 9: An activation chain

The execution of the statechart of Figure 9 exhibits
such a behavior: when the event e1 is raised while in
s0, the state machine will take the transition to s1 as
x is equal to 0, then take the transition to s2, as the
transition has no trigger, and finally to s3. To an exter-
nal observer, the visible state activation will go from
s0 to s3 directly. A path made of transitions that can
be taken globally during an execution of a statechart is
called an activation chain.

This behavior can results in infinite looping if not
handled carefully, like in Figure 10. The semantics of
our statechart language imply that the execution will
continue indefinitely between s0 and s1 (highlighted
in red), without ever resuming continuous-time simu-
lation.

To ensure that a statechart will never stall a simula-
tion, activation chain cycling is forbidden, hence forc-
ing users to break cycles with triggers. For example,
fixing the statechart of Figure 10 requires the addition
of a trigger on the transition between states s1 and s0.

The possibility to take several transitions in a single
execution leads to potential duplicated assignments of
variables, as in Figure 6 where variable o is assigned

Statecharts as a Means to Control Plant Models in LMS Imagine.Lab AMESim

1244 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961237



2

s2

 e

1

s1

 [x >= 0]

s0

 / x := 0

 [x >= 0]

Figure 10: A cyclic activation chain

twice, once on the transition from s0 to s1 and once
on the transition from s1 to s2.

As explained in Subsection 4.2 about transition ob-
servability issues, this behavior is undesired and the
implementation prevents it by analyzing the assign-
ments along every activation chain and rejecting the
activation chains that assign a variable more than once.

5.2.1 Practical chains analysis

The algorithm used to check the invariants mentioned
above is mainly a depth-first search coupled with
memoization. Each state is visited to compute its acti-
vation chains and forward assigned variables while the
set of visited states in the current activation chain and
the set of already assigned variables are maintained.
Any intersection with the visited values and the ones
already stored results in an error.

Another possibility would be to use a data-flow
framework and express activation and assignment as
liveness information to be propagated by the frame-
work.

6 Code generation strategy

In this section, an overview of a code generation strat-
egy leveraging the existing AMESim Modelica tool
chain is presented.

6.1 Describing statecharts in Modelica

Modelica fits well to our purpose as a statechart that
passes the validation stages discussed in the previous
section can be described by a Modelica model that is:

• valid, i.e., is guaranteed to compile without error,
thanks to the syntax and type check phases, and

• sound with respect to mixed discrete/continuous
semantics as all ambiguous models are filtered
out by the restrictions regarding simultaneous
events.

Listing 4 shows how Modelica code can be gener-
ated to describe the statechart of Figure 1.

Listing 4: Code generated for the statechart of Figure 1
e = pulse > 0.0;
when initial() then

reset_count = 0;
counter = 0;
st2 = true;
st1 = false;

elsewhen e then
if pre(st2) then

if pre(counter) == 10 then
counter = 0;
reset_count = pre(reset_count) + 1;
st2 = false;
st1 = true;

else
counter = pre(counter) + 1;
reset_count = pre(reset_count);
st2 = true;
st1 = false;

end if;
elseif pre(st1) then

counter = pre(counter) + 1;
reset_count = pre(reset_count);
st2 = true;
st1 = false;

else
counter = pre(counter);
reset_count = pre(reset_count);
st2 = pre(st2);
st1 = pre(st1);

end if;
end when;

Each event generator is associated with an
elsewhen clause with the logic to handle this spe-
cific event as the body of the clause. This logic is
encoded as cascading if statements representing the
various transitions, the transition priorities being used
to order the conditions. The equations describe the ac-
cumulated content of the action part of every transition
and of the state activation updates.

Activation chains are generated recursively, for each
level of the chain, the final body standing for the con-
catenation of all the actions. For instance, adding a
transition from reset to count with the expression
[reset_count > 2] and a priority below the exist-
ing one in the example counter statechart would create
an activation chain resulting in the code shown in List-
ing 5.

Listing 5: Code generated for the statechart of Figure 1
augmented with an activation chain

...

Poster Session

DOI
10.3384/ECP140961237

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

1245



if pre(st2) then
if pre(counter) == 10 then

if pre(reset_count) > 2 then
counter = 0;
reset_count = pre(reset_count) + 1;
st2 = true;
st1 = false;

else
counter = 0;
reset_count = pre(reset_count) + 1;
st2 = false;
st1 = true;

end if;
else

counter = pre(counter) + 1;
reset_count = pre(reset_count);
st2 = true;
st1 = false;

end if;
elseif pre(st1) then
...

7 Graphical user interface aspects

AMESim provides an editor to let users easily create
statecharts and statically validate them, highlighting
erroneous parts in red as seen in Figure 11.

Figure 11: A statechart with a structural error high-
lighted in red

The editor also serves as a debugger as it is able
to replay the behavior of a statechart during simula-
tion, highlighting the active states and showing the val-
ues taken by all variables. Additional post-processing
features are available, such as the possibility to easily
jump between state changes. Timing diagrams repre-
senting state activations can be obtained using the reg-
ular AMESim data plotting facilities by displaying the
activation variable associated with every state.

8 Conclusion and perspectives

In this paper, a few challenging issues associated with
modeling and simulating hybrid models in an asyn-
chronous environment are discussed.

A practical solution implemented in AMESim to
avoid those issues and to offer a reliable and usable
user interface is presented. This solution is built on
top of the AMESim Modelica tool chain and demon-
strates how a specific language can be implemented in
terms of a more general language. The condition is, of
course, that any model expressed in the specific lan-
guage can somehow also be expressed without loss of
meaning in the base language, which demands special
care. However, the advantages of this approach are
appealing as it is then possible to combine the conve-
nience associated with a user friendly dedicated lan-
guage with the power of a more general underlying
language allowing to connect models expressed using
different paradigms together. A core language can thus
be extended to new applicative domains without being
altered, retaining its generality.

Future work involves extending the supported sub-
set of the statechart language, for example to al-
low parallel states. Developing practical and scalable
means of building statecharts by composing smaller
ones is another interesting perspective.

References

[1] David Harel. Statecharts: A visual formalism for
complex systems, 1987.

[2] Sébastien Furic. Enforcing reliability of discrete-
time models in modelica. In Proceedings of the
8th International Modelica Conference, 2011.

[3] Albert Benveniste, Timothy Bourke, Benoît Cail-
laud, and Marc Pouzet. Non-standard semantics
of hybrid systems modelers. Journal of Computer
and System Sciences, 78(3):877 – 910, 2012.

[4] R. Hindley. The Principal Type-Scheme of an
Object in Combinatory Logic. Transactions of
the American Mathematical Society, 146:29–60,
1969.

[5] Luis Damas and Robin Milner. Principal type-
schemes for functional programs. In Proceed-
ings of the 9th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages,
POPL ’82, pages 207–212, New York, NY, USA,
1982. ACM.

Statecharts as a Means to Control Plant Models in LMS Imagine.Lab AMESim

1246 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP140961237


