
1

Custom Annotations:
Handling Meta-Information in Modelica

Dirk Zimmer1, Martin Otter1, Hilding Elmqvist2, Gerd Kurzbach3
1German Aerospace Center (DLR), Institute of System Dynamics and Control,

D-82234 Wessling, Germany,
2Dassault Systèmes AB, Ideon Science Park, SE-223 70 Lund, Sweden

3ITI GmbH, 01067 Dresden, Germany
dirk.zimmer@dlr.de, martin.otter@dlr.de, hilding.elmqvist@3ds.com, kurzbach@itisim.com

Abstract
Annotations and attributes form an important part of
the Modelica language. They are used to include var-
ious meta-information such as documentation, exter-
nal C-code, compilation hints, etc. Given the increas-
ingly wide field of potential applications the set of
useful annotations becomes too large to be included
in the language specification. Hence we present a
proposal how a Modelica modeler may define his
own annotations and how such custom annotations
can be organized within Modelica libraries. In the
long term, the goal is to move the definition of
standardized annotation, as well as of attributes,
from the Modelica specification to a standard library.
Keywords: meta-information; custom annotations;
optimization setup; Monte Carlo simulation setup;
Kalman filter setup; uncertainty setup.

1 Introduction
The main purpose of Modelica is to enable the equa-
tion-based modeling of physical systems. In addition
to this primary objective, the modeler has to care
about the usability of his/her components. This in-
cludes a variety of tasks: documentation needs to be
written, icons need to be drawn, a 3D visualization
has to be provided, and compilers might need hints
for generating more efficient code.

All this is meta-information to the actual physical
model but as Figure 1 shows, it can account for a
major share of the code: For the FixedTranslation
component (a rigid rod in 3D Mechanics), the physi-
cal modelling contributes only to 14% of all the
code. Of course such a comparison is skewed since it
is doubtful to compare manually typed equations
with auto-generated code for graphical objects but
nevertheless the handling of meta-information de-
serves to be a major concern for the future design of
the Modelica language.

An improved solution for meta-information in
Modelica becomes necessary since there is a desire
to include more and more information into the mod-
els. Especially, a model might be used not only in
simulation, but in other analysis and synthesis meth-
ods, and then additional model-specific data is need-
ed. For example, sensitivity analysis needs uncertain-
ty data for model variables, Monte Carlo simulation
needs stochastic distribution data on states and/or
parameters, an optimization setup needs the infor-
mation which parameters and/or input signals shall
be optimized, and in which range the optimization
shall take place.

To meet these demands, we propose an enhance-
ment to Modelica: custom annotations. But before
we address the new proposal, let us look at the cur-
rent handling of meta-information in Modelica and
its weak spots and then formulate the requirements
for a new design.

Figure 1: Percentage of characters devoted to
certain tasks in Modelica.Mechanics.MultiBody.Parts.
FixedTranslation. Source: (Zimmer 2008)

DOI
10.3384/ECP14096173

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

173

2

2 Handling of Meta-Information

2.1 Meta-Information in Current Modelica

The Modelica language (Modelica Association 2012)
offers currently two devices that are used for meta-
information: annotations and attributes.

Standard annotations are defined for a multitude
of issues: graphical information for icons and dia-
grams, GUI-design, documentation, version han-
dling, etc. Here is a typical annotation in a Modelica
code. It describes the representation of a parameter
in the GUI of the modeling environment and advises
the compiler to evaluate this parameter before gener-
ating code:

parameter RotationSequence sequence
 "Sequence of rotations "
 annotation(Evaluate=true,
 Dialog(tab="Advanced",
 enable=not useQuaternions)
);

Since the information is mostly of no interest for the
human reader and an inadvertent manipulation shall
be prevented, most modeling environments for Mod-
elica hide annotations from the user by default.

Attributes are also used for meta-information alt-
hough this information is mostly linked closer to the
physical variables (or parameters) of the model:
physical units, minimum and maximum boundaries
or potential start values for iterative solvers are de-
scribed by this language construct. The following
example contains attributes for the start value,
whether they are used for as initial equations, and
whether the variable shall be used as state-variable
depending on another parameter.
SI.AngularVelocity w_a[3] (
 start=Frames.resolve2(R_start,w_0_start),
 fixed=fill(w_0_fixed, 3),
 each stateSelect=
 if enforceStates then
 (if useQuaternions then
 StateSelect.always
 else StateSelect.never)
 else StateSelect.avoid)

The two listings above give a quick glance on how
meta-information is stored within Modelica. The cur-
rent solution served fine for more than a decade but
it has come to its limitations. We are confronted with
two major weaknesses: rising complexity and ambi-
guity.

The first weakness is simply the sheer amount of
definitions that are needed. The current version of
the specification devotes already 20 pages for more
as 70 annotations and roughly 7 pages for about 10
attributes. The specification is already a long docu-
ment and further inflation must be prevented. Also

we have to keep in mind that the specification is
primarily targeted for tool vendors and not for end-
users. Most end-users should not have to consult the
specification but rather refer to other material.

The second weak point is that the definition in the
specification is often not complete. For example, it is
usually not defined on which elements an annotation
can be placed and only from context one might de-
duce that annotation “Evaluate” makes sense only
for primitive data types, whereas annotation “docu-
mentation” might make sense at many places, but
is actually in use only on classes and not on compo-
nents.

The third weak spot is the ambiguity between the
two different concepts. Whether some information
belongs to an attribute or to an annotation is not al-
ways clear and has often be a discussion point in the
design process of the language. For example,
stateSelect is an attribute used to tell the compil-
er which variables shall form the state-space of the
model. Evaluation is an annotation and used to tell
the compiler which parameters to evaluate before-
hand.

Such discussions are often influenced by the dif-
ferences in which way attributes and annotations can
be accessed. Attributes can be set in (even nested)
modifiers, annotations cannot. Vendors can specify
their own annotations but they are not allowed to do
this for attributes.

2.2 Meta-Information in other Languages

In (Zimmer 2008) the handling of meta-information
(here denoted as multi-aspect modelling) is discussed
for various other modeling languages such as
VHDL-AMS or SPICE3. Then another approach is
proposed based on the experimental language Sol
(Zimmer 2009). Here the modeler is given the oppor-
tunity to define his/her own annotations by means of
environment packages and then can use them by in-
stantiating the components of this package within
pre-specified sections of his model. This is conven-
iently possible because in Sol components have first-
class status (Burstall and Strachey, 2000) unlike in
current Modelica.

Another (although similar) proposal is discussed
in (Zimmer, 2012). It is based on another experi-
mental language called Hornblower. Also here anno-
tations can be defined within packages and then used
within the models. This concept treats annotations
like “loosely attached parameters”. These are param-
eters that can be set but do not have to be set. This is
possible since such parameters were ensured to al-
ways have a reference to a default object.

Custom Annotations: Handling Meta-Information in Modelica

174 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096173

3

Meta information can also be defined in certain
programming languages, especially in Java (Coward
2004): From http://en.wikipedia.org/wiki/Java_an-
notation: “Classes, methods, variables, parameters
and packages may be annotated. Unlike Javadoc
tags, Java annotations can be reflective in that they
can be embedded in class files generated by the
compiler and may be retained by the Java VM to be
made retrievable at run-time. It is possible to create
meta-annotations out of the existing ones in Java”.

General programming languages often cope much
better with meta-information than declarative model-
ing languages because they own suitable data-
structures and often contain already sufficient means
for introspection. In Python, there are doc-strings for
documentation but they are just predefined class
members. Also class or function decorators are used
to express a meta-construct on an item, but also these
constructs are regular language constructs. In Python
there is no need to have language constructs solely
devoted to meta-information; instead the regular
constructs prove to be sufficient. This shows to us
that it is a good idea to reuse regular language con-
structs for meta-information in Modelica as much as
reasonable feasible.

3 Design Goals
In concrete terms, the following goals shall be
reached:
• The modeler must be able to define annotations

by him- or herself.
• Existing annotations or attributes shall be de-

fined in the same way and removed from the
specification (at least as many as possible). This
will require to introduce more powerful data
structures in Modelica.

• The annotations shall be organized in packages
so that an end-user can browse through them and
do not need to address the specification any-
more.

• The modeler must be able to apply custom anno-
tations in (nested) modifiers.

• Annotation must never be required to be provid-
ed by the user. Annotations and its parts are al-
ways meta-information that can be given option-
ally.

• The proposed design must be backwards com-
patible so that current code is not broken.

• The proposed design can make some language
constructs obsolete that can then be removed
from the language in the future.

• It must be specified how the meta-information
contained in custom annotations is handled for
model-export (for instance FMI).

Based on these goals, we have developed a suitable
design for a future version of the Modelica language:
Custom annotations.

4 Design Proposal
The basic idea of our proposal is to use basic Model-
ica “records” to define custom annotations and then
make them better applicable by enabling the use of
annotations in modifiers. In this way, new features
can be introduced without having to define many
new language elements. Note, records are also the
basis of nearly all built-in Modelica annotations. A
similar concept in (Zimmer, 2012) served as addi-
tional starting point. However the transition from an
experimental language to a heavily applied language
like Modelica demanded several adaptations.

4.1 Use of Records within Annotations

Let us look at an example: Here the Modelica pack-
age OptimSetup shall be used to define an optimi-
zation setup for a model and contains the definition
of three record classes that each can be applied as
custom annotations.
package OptimSetup
 record Tuner "Parameter to be optimized"
 parameter Boolean active = true
 "= true, if parameter is optimized";
 parameter Real min
 "Optional minimum value";
 parameter Real max
 "Optional maximum value";
 end Tuner;

 record Minimize
 "Signal that should be minimized"
 parameter Boolean active = true
 "= true, if used as criterion";
 parameter Real demand = 1.0
 "Value/demand is minimized";
 end Minimize;

 record OptimOptions "Default options for
 the optimization setup"
 parameter String method
 "Optional optimizer method";
 parameter Real tolerance = 0.001
 "Tolerance of optimization";
 end OptimizationOptions;

 record SimOptions
 "Default options for simulation setup"
 parameter String method;
 parameter Real stopTime;
 end SimulationOptions;

end OptimSetup;

Session 1E: Modelica Language & Compiler Implementation

DOI
10.3384/ECP14096173

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

175

4

The record and type definitions of package Op-
timSetup can now be used to describe the setup of
an optimization. For example, a parameter can be
marked to be a “Tuner” that shall be optimized. The
following statement

parameter Real p1
 annotation(OptimSetup.Tuner(
 active=true, min=-2));

indicates that for a default optimization setup for this
model, parameter p1 shall be used as tuner and shall
have a constraint p1 >= -2. A custom annotation is
identified by the full path name of the Tuner record
class. This defines a new instance of the record, to-
gether with a modifier on this record. So, conceptual-
ly, this custom annotation is equivalent to the follow-
ing declaration:

OptimSetup.Tuner name(active=true,
 min=-2);

and the name of the instance is not defined, because
not needed (the identification of the data is via the
class name). Exactly in the same way as in a stand-
ard declaration, an element of a record needs not to
have a default value or a binding equation in its
class, and also not in a modifier.

The lookup of a class name inside an annotation
is performed on global scope, so always full path
names must be given. This simplifies and speeds up
the lookup, especially once built-in annotations are
defined as custom annotations in a second phase1.
A custom annotation can be also defined on a class.
Furthermore, custom and built-in annotations can be
within the same annotation declaration, by using a
comma-separated list as usual. For example:

model ControlledDrive
 ...
 annotation (Documentation(info="..."),
 OptimSetup(
 OptimOptions(tolerance=1e-3),
 SimOptions(stopTime=4.0, tol=1e-6)
));
end ControlledDrive;

4.2 Enabling Annotations within Hierarchical
Modifiers

So far the only extension to the current Modelica
language has been that regular Modelica records can
be used within annotations. Taken for itself, this is
already a progress but it does not suffice to provide
the desired level of functionality. For many applica-

1 When built-in annotations are defined with custom annotations,
it is proposed that they are placed, e.g., in ModelicaSer-
vices.Annotations, and that this package is inspected first and
then the global scope.

tions it is important that annotations can be applied
within hierarchical modifiers.

Hence we propose to enable the use of annotation
statements within hierarchical modifiers. Here, cus-
tom annotations can be either newly constructed or
an already defined custom annotation can be modi-
fied. Let us look at two corresponding examples:
MyCar car(p1 annotation(
 OptimSetup.Tuner(active=false)),
 p2 annotation(
 OptimSetup(Tuner(max=4))),
 p3(min=-3) = 5 annotation(
 OptimSetup.Tuner(min=-2, max=3))
);

In this example, the already defined Tuner.active
value of p1 is modified to false. Parameters p2 and
p3 are assumed to be defined in MyCar without any
annotation. The declarations above introduce new
instances of custom annotation OptimSetup.-
Tuner, and modify these instances with the given
values.

Whereas in principle built-in annotations could be
applied within hierarchical modifiers too, we pro-
pose to restrict this in a first phase because built-in
annotations operate on data structures that are una-
vailable as the standard language elements and then a
standard modifier cannot be applied. This is for in-
stance the case for the annotations describing icons
that use case records as data elements. For the future,
one may solve this problem by enriching Modelica
with suitable data structures. This is a topic where
discussion is ongoing in parallel.

As with built-in annotations, it is not possible to
read and/or use the value of a custom annotation in a
Modelica class (only the translator can use the in-
formation contained within annotations by either
performing appropriate actions or by passing them to
its backend).

4.3 About the Use of Hierarchical Records

Since regular Modelica records can be used within
annotations, this holds also true for hierarchical rec-
ords. This is per se not problematic but a few details
require a discussion.

Let us suppose we add a hierarchical record Op-
tions to our previously present OptimSetup pack-
age:

package OptimSetup

 record Tuner […]

 record Minimize […]

 record OptimOptions […]

Custom Annotations: Handling Meta-Information in Modelica

176 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096173

5

 record SimOptions […]

 record Options
 OptimOptions optOpts =
 OptimOptions(method=”sqp”);
 SimOptions simOpts;
 end Options;

end OptimSetup;

The following example model shows a correct way
of using the hierarchical record and a wrong way to
do it:

model ControlledDrive
 ...
 // correct Modelica code
 annotation(OptimSetup.Options(
 optOpts = OptimSetup.OptimOptions(
 method=”pattern”),
 simOpts(stopTime = 2)
);

 // wrong Modelica code
 annotation(OptimSetup.Options(
 optOpts(method=”pattern”),
 simOpts = OptimSetup.SimOptions(
 stopTime=2)
));
end ControlledDrive;

The record Options has two element record in-
stances:

The first element optOpts is defined with a rec-
ord constructor. This means there is a binding equa-
tion to optOpts. Binding equations cannot be modi-
fied with a modifier. They can only be replaced by
another binding equation. Therefore in the “correct”
code, a record constructor is used to define modified
elements. Note, a record constructor must return a
complete record, and therefore all elements of the
record must have a value (either defined in the con-
structor or the default values from the class).

The second element simOpts is defined without a
default value or a binding equation. When instantiat-
ing it in the “correct” code, a modifier to its elements
is given. In this case, not all elements must be modi-
fied. In the “wrong” code, a record constructor is
used to define modified elements. This would be fi-
ne, but element method has no default value in the
SimOptions class, and the record constructor has no
input argument for this element, and this is then an
error.

Please note that all this is already standard Mod-
elica semantics and holds for standard record decla-
rations, and therefore it shall hold for record declara-
tions in a custom annotation as well. We have just
repeated these points for the sake of clarity.

4.4 On Inherited Elements

Since models can be inherited, both the superclass
and the subclass may define the same custom
annotation. Two cases need to be distinguished:

Case 1: the additional custom annotation is defined
in the extends clause, such as:
model MyCar
 extends Car(
 p1 annotation(OptimSetup.Tuner(
 active=false)),
 annotation(OptimSetup.OptimOptions(
 tolerance=1e-3))
);

It seems natural to handle this case as modifier, if the
custom annotation was already defined in one of the
superclasses (otherwise, a new custom annotation is
introduced). Therefore, the model can contain the
same custom annotation on one element at most
once, and the semantics is well-defined (the seman-
tics of a Modelica modifier).

Case 2: the additional custom annotation is defined
as class annotation, such as:
model MyCar
 extends Car;
 annotation(OptimSetup.OptimOptions(
 tolerance=1e-4));
end MyCar;

In this example it is assumed that in model Car the
element tolerance is defined as 1e-3 and in model
MyCar as 1e-4. This creates an ambiguity that needs
to be resolved. The Modelica built-in annotations use
two different semantics: For the “documentation”
annotation, all superclass definitions are ignored. For
the “Icon” and “Diagram” annotations, the subclass
and superclass definitions are applied after each
other (so all of them have an effect).

It is hence proposed to support all these forms by
allowing that the same class custom annotation can
be used in super- and subclasses. The consequence
of this is that an annotation may occur several times
in a class. A vector of records can be used to
represent the multiple occurences of one annotation
in one class. The order of the vector elements
thereby corresponds to the order of inheritance. In
case of multiple inheritance, the order of the
corresponding extends statements is used.

When generating the standardized “output” format
of custom annotations in case 2, such definitions can
be represented as a vector of records. The target tool
that is using this custom annotations has then to
decide how to comprise the information contained in
all vector elements. In general, useful strategies are:

Session 1E: Modelica Language & Compiler Implementation

DOI
10.3384/ECP14096173

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

177

6

• Only utilize the latest definition (last element of
the vector), and ignoring definitions in
superclasses.

• Only utilize the latest definition (last element of
the vector), and triggering an error, if equivalent
definitions are provided in superclasses (prior
elements of the vector).

• Utilizing all definitions by merging them
together (following the order of the vector).

4.5 Remaining Issues

4.5.1 Handling of undefined annotations using
parameters

One problem arises from the point that it is often not
possible to define a meaningful default value for a
custom annotation element. For example, “method”
of the optimization options defines the optimization
method to be used and this depends on the optimiza-
tion environment where the model and the custom
annotations will be imported. It is therefore not pos-
sible to define a meaningful default value. Further-
more, the modeler may decide to not define a value
for the method in the custom annotation of the Mod-
elica model. For this reason, not all elements of a
custom annotation record needs to have a value when
it is actually used in an annotation. If an element,
such as “method” is not explicitly set, then it is not
present in the annotation and this implicitly means
that the target environment has to cope with this un-
defined value in a target specific way.

This is not an issue as long as custom annotations
are specified directly in the textual layer but provid-
ing custom annotations in this way is often not con-
venient for a user. Instead special blocks or models
might be defined where all the relevant information
of the custom annotation can be defined in a menu.
For example, the OptimOptions above might be
defined as a partial model that is used via inher-
itance:
 partial model OptimOptions
 OptimSetup.OptimOptions optimOptions
 annotation(Placement(..));
 annotation(OptimSetup.OptimOptions(
 method =optimOptions.method,
 tolerance =optimOptions.tolerance),
 Diagram(...);
 end OptimOptions;

 model DrumBoiler // shall be optimized
 extends OptimOptions;
 ...
 end DrumBoiler;

In the diagram layer of DrumBoiler, the optimOp-
tions are present with a record icon:

and clicking on this icon opens a convenient parame-
ter menu for the definition of the options:

This approach is welcomed by the user, but currently
involves one severe drawback: the user has to pro-
vide a value also for optional elements, such as
method, because this element is propagated to the
annotation (above: OptimSetup.OptimOptions
(method = optimOptions.method)). If no value
would be provided, then the translator needs to trig-
ger an error. Therefore, the user can no longer ex-
press to not define such an optional custom annota-
tion.

For this reason, it is considered to introduce a lim-
ited form of “undefined” handling of definitions and
modifiers that is handled during the translation pro-
cess. The goal is

• to remove annotations if they are defined with
“undefined” elements.

• to remove modifications performed in a lower
hierarchical level.

So far several approaches to this problem have been
suggested but a sufficient level of maturity has yet to
be reached.

4.5.2 Restricting the application of annotations
to certain types

In the current proposal, any annotation might be ap-
plied to anything. Also meaningless applications are
allowed. For instance the annotation for an optimiza-
tion tuner cannot only be applied to real numbered
parameters but also to Boolean parameters or strings.
Even an application to a model class is allowed. Also
the annotation for the simulation setup cannot only
be applied to model classes as originally intended but
also to individual components or variables where it
becomes meaningless.

Taken for themselves, such meaningless or ill-
applied annotations are not harmful since the meta-
data cannot corrupt the main code but yet it might be
better to restrict the applicability to annotation to
give a better guidance where an annotation is sup-
posed to be used.

How such a restriction is best imposed or if it shall
be imposed at all, is still open for discussion. One
way of doing it, could be to express the restriction by

Custom Annotations: Handling Meta-Information in Modelica

178 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096173

7

annotations themselves in the corresponding annota-
tion record. A new built-in annotation Annota-
tionTarget could serve this purpose. It would con-
tain an enumeration listing for the various possibili-
ties where an annotation can be applied:

record AnnotationTarget
 type Target = Enumeration(
 Any,
 ClassDefinition,
 ModelDefinition,
 BlockDefinition,
 ConnectorDefinition,
 RecordDefinition,
 FunctionDefinition,
 TypeDefinition,
 ComponentDeclaration,
 ModelDeclaration,
 BlockDeclaration,
 ConnectorDeclaration,
 RecordDeclaration,
 FunctionDeclaration,
 TypeDeclaration,
 SimpleComponentDeclaration,
 RealDeclaration,
 IntegerDeclaration,
 BooleanDeclaration,
 StringDeclaration,
 InitialEquationAndAlgorithm,
 InitialEquation,
 InitialAlgorithm,
 EquationAndAlgorithm,
 Equation,
 Algorithm,
 ConnectorEquation
);

 type Prefix = Enumeration(
 Any, None, Constant, Parameter,
 Discrete, Input, Output, Inner,
 Outer, Flow, Stream);

 Target target[:] = {Target.Any};
 Prefix prefix[:] = {Prefix.Any};
end AnnotationTarget;

One can now use such an annotation to restrict the
applicability of the Tuner annotation:

record Tuner "Parameter to be optimized"
 import A = AnnotationTarget;
 parameter Boolean active = true;
 parameter Real min;
 parameter Real max;
 annotation(AnnotationTarget(
 target = {A.Target.RealDeclaration},
 prefix = {A.Prefix.Constant,
 A.Prefix.Parameter}
);
end Tuner;

This definition states, that the Tuner record is only
to be used in an annotation on a Real declaration
that has a constant or parameter prefix.

4.6 Summary

In this proposal we reuse and generalize existing
concepts from the Modelica language. By doing so,
we enable the handling of custom annotations. Let us
recapitulate our proposed extensions to the Modelica
language:
• Regular Modelica records can be used within

annotations.
• Custom annotations can be applied in hierar-

chical modifiers.
• Hierarchical records are automatically supported

in annotations.
For the moment, custom annotations are regarded as
an additional feature but for the longer-term future
an even extended concept shall be used to define also
the standardized annotations. This would unify the
language and reduce the complexity of the specifica-
tion.

5 Using Meta-Information
In the previous section it was proposed how to store
meta-information in a Modelica model. Due to its
definition, it is not allowed to use this information in
the model itself. The question is how a user or a tool
can inquire the stored meta-information. Of course,
if meta-information is related closely to a simulation
model, most likely the respective Modelica translator
has to extract and use the information in a tool spe-
cific way (for example meta-information related to
the graphical representation of the model in the tool).

In this section, we analyze how to extract and uti-
lize user-defined custom annotations for two possible
applications: storing meta-information in FMI format
and using meta-information in scripting. Of course
many further applications are possible.

5.1 Storing Meta-Information in FMI Format

The Functional Mockup Interface (FMI) (Blochwitz
et.al., 2011 and 2012) is a tool independent standard
to support both model exchange and co-simulation of
dynamic models using a combination of XML-files
and compiled C-code. For details see,
https://www.fmi-standard.org/. Most Modelica tools
support the export and import of models in FMI for-
mat. The FMI standard stores all static model infor-
mation in a file called modelDescription.xml in
XML format. In particular, the information of all
exposed variables are stored here, such as name, data
type, unit, description text, variability, causality, etc.
The FMI format 1.0 has been published in 2010 and

Session 1E: Modelica Language & Compiler Implementation

DOI
10.3384/ECP14096173

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

179

8

is supported by more as 40 tools. The release candi-
date of FMI 2.0 has been published in October 2013.

Since custom annotation variables are basically
standard Modelica variables with all the attributes of
Modelica variables, it is proposed to just store them
as standard FMI variables and mark the “custom an-
notation” property in the name. In particular, the
name of a custom annotation variable shall be:
 <ComponentName>.annotation.<Custom
 AnnotationFullClassName>.<elementName>

Note, “annotation” is a reserved keyword in Mod-
elica and therefore a name with “.annotation.”
cannot be used as component name, so that a name
clash between standard Modelica variable names and
custom annotation variable names cannot occur.

As previously mentioned, via inheritance the
same custom annotation can be used several times in
a class annotation. This is handled by always defin-
ing a class annotation with a vector name where the
index defines the inheritance order (the post-
processing tool has then to define how to handle
such vectors, e.g., to only use the first one, or utilize
all definitions):
 <ComponentName>.annotation[<i>].<Custom
 AnnotationFullClassName>.<elementName>

Example:
The custom annotation proposal has been partially
implemented in a Dymola prototype for evaluation.
The Modelica model
model Vehicle
 parameter Real p1=2 annotation(
 OptimSetup.Tuner(min=-2));
 ...
end Vehicle;

model ControlledDrive
 Vehicle car;
 ...
 annotation(OptimSetup.OptimOptions(
 tolerance=1e-3));
end ControlledDrive;

is stored in the following way in modelDescrip-
tion.xml file with the Dymola prototype:
<?XML version="1.0" encoding="UTF-8"?>
<fmiModelDescription
 fmiVersion="2.0"
 modelName="ControlledDrive"
 ...
 >

 ...

 <ModelVariables>
 <ScalarVariable
 name="car.p1"
 valueReference=" 16777216"
 description ="..."

 causality ="parameter"
 variability ="fixed">
 <Real start ="2"/>
 </ScalarVariable>

 <ScalarVariable
 name="car.p1.annotation.
 OptimSetup.Tuner.min"
 valueReference="0"
 variability = "constant">
 <Boolean start= "true" />
 </ScalarVariable>

 <ScalarVariable
 name="annotation[1].OptimSetup.
 OptimOptions.tolerance"
 valueReference="0"
 variability = "constant">
 <Real start="1.0e-3" />
 </ScalarVariable
 ...
 </ModelVariables>
</fmiModelDescription>

The “annotation” in a name uniquely identifies the
component to which this annotation is associated.
For example “car.p1.annotation....” means
that this variable is a custom annotation to variable
“car.p1”. Usually, custom annotation variables are
constants or parameters that are evaluated during
translation and therefore these variables are stored
with variability=”constant” and with a literal
value in the xml file.

However, the above scheme is not restricted to
this case: A custom annotation may contain time
varying variables. In such a case the XML file alone
is not sufficient to store the information, but a full
FMU (Functional Mockup Unit) is needed, because
the code to compute a time-varying variable at a par-
ticular time instant needs to be evaluated by the
compiled C-code of the FMU.

If a tool already supports the export of a Modeli
ca model in FMI format, then custom annotation var-
iables have just to be included and stored in the
standard variable tree.

5.2 Using Meta-Information in Scripting
Environments

Typically, user-defined custom annotations are used
to setup special analysis or synthesis environments,
like optimization, nonlinear model predictive con-
trol, Monte Carlo simulation or uncertainty analysis.
For this, the underlying model is needed, as well as
the analysis-specific custom annotations defined in
the model. If the custom annotations are stored in
FMI format as proposed in the previous sub-section,
the further processing is, in principal, simple: The
information is stored in an XML-file and there are
many scripting environments available, such as Java,

Custom Annotations: Handling Meta-Information in Modelica

180 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096173

9

JavaScript, Matlab, Python, Ruby, to very easily read
XML files and deduce the desired information from
it. Therefore, meta-information about non time-
varying custom annotations can be deduced in a
straightforward way from all these scripting envi-
ronments. If also time varying variables shall be
supported, a scripting environment with FMI support
is needed. Typically, the scripting environment will
be used, in which the analysis or synthesis task can
be directly formulated.

When using Dymola (Dassault Systèmes, 2014),
there are scripts available to perform offline and
online optimization, Monte Carlo simulation, cali-
bration and others. It is natural to simplify the setup
of these tasks by defining the model specific parts
already in the respective model using custom annota-
tions. Dymola uses the algorithmic part of Modelica
as scripting language. Unfortunately, there is no API
available to read XML files. This might also be not
possible in a generic way, because the data structures
supported by Modelica are not powerful enough for
such applications.

For this reason, a special new Dymola API func-
tion was designed and implemented to read the vari-
able information of an FMI 2.0 XML file (so the in-
formation about all exposed signals). The approach
is demonstrated in the following code fragments:

function generateXXXsetup
 input String fileName;
protected
 ScalarVariable scalarVariable[:] =
 importScalarVariables(fileName);
algorithm
 ...
end generateXXXsetup

Function generateXXXsetup is a user-defined
Modelica function to read an FMI XML file and
generate the setup for the respective analysis task.
The core is the new Dymola API function im-
portScalarVariables that reads the <ScalarVari-
able> part of an FMI XML file and from this infor-
mation all custom annotations can be deduced. The
function returns a vector of records that has a com-
plicated structure: Since Modelica does not have var-
iant records, the different parts of the variable de-
scription are just appended. Some parts of the record
definition are given below:

record ScalarVariable
 import Records.InternalRecords.*;
 import Records.Enumerations.*;
 String name;
 Integer valueReference;
 Causality causality;
 Variability variability;
 Initial initialDefinition;
 OptionalInteger previous;

 Type variableType;
 RealAttributes realAttributes;
 IntegerAttributes integerAttributes;
 BooleanAttributes booleanAttributes;
 StringAttributes stringAttributes;
 IntegerAttributes
 enumerattionAttributes;
end ScalarVariable;

record RealAttributes
 OptionalString declaredType;
 OptionalString quantity;
 OptionalString unit;
 OptionalString displayUnit;
 OptionalReal min;
 OptionalReal max;
 Real nominal;
 Boolean unbounded;
 OptionalReal start;
 OptionalInteger derivative;
 OptionalBoolean reinit;
end RealAttributes;

record OptionalReal
 Boolean present;
 Real Value;
end OptionalReal;
 ...

Many attributes of <ScalarVariable> are optional.
There is no special data type in Modelica to support
optional values. For this reason, records “Op-
tionalXXX” are used: Boolean element present de-
fines whether the Value is defined, or was not giv-
en.

By inspecting all “scalarVariable[i].name”
strings that have .annotation. in their name, the
desired custom annotations can be deduced and can
be utilized to generate the desired default setup of
the respective environment.

6 Conclusions
There is a strong need to deal with meta-information
in equation-based languages. We presented here a
first design in order to enable a better handling of
meta-information in Modelica: custom annotations.

These can be defined by the user and can be or-
ganized within packages. For the long term future,
we hope to extend this concept to such a degree that
a very high percentage of existing annotations can be
covered by one unified concept and the specification
can be simplified accordingly. For the near future,
we are confident that the proposal will be the base
for an enhancement of the Modelica language speci-
fication.

It is important to note that the presented design is
a design proposal and by no means a definitive de-
sign. Also the Modelica Association offers a new
process called Modelica Change Proposal (MCP) to

Session 1E: Modelica Language & Compiler Implementation

DOI
10.3384/ECP14096173

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

181

10

work a proposal into the language specification. The
desired design for custom annotations will undergo
this process and thereby being reviewed and eventu-
ally improved. The aim of this publication is hence
to inform the public about the ongoing efforts for
handling meta-information in Modelica and not to
announce a definitive design decision.

Acknowledgements
The custom annotation proposal in this article was
developed within the ITEA2 project MODRIO. Par-
tial financial support of the German BMBF and the
Swedish VINNOVA for this development are highly
appreciated.

This development was initiated by the MORIO
project leader Daniel Bouskela, because associating
meta-information with a Modelica model is a core
feature needed in the MODRIO project.

Several variants of this proposal have been dis-
cussed in Modelica Design Meetings and via the
Modelica trac system. Comments and improvement
suggestions, especially from (alphabetical list):
Volker Beuter, Peter Fritzson, Hans Olsson, Jesper
Mattsson, Martin Sjölund, Michael Tiller, are highly
appreciated.

A Dymola prototype to export custom annota-
tions in an FMU was implemented by Hans Olsson
and Karl Wernersson. Based on this prototype, Hans
Olsson proposed to simplify the name lookup as it is
described now in this paper.

The Dymola API function to read the variable de-
scription from an XML-file into Modelica was im-
plemented in a prototype by Karl Wernersson. Based
on this prototype, he proposed to refine the design,
especially with respect to undefined attributes.

Custom annotations are already utilized in project
MODRIO to develop optimization setups of various
optimization problems. This work, carried out by
Bernhard Bachmann, Martin Otter, Andreas Pfeiffer
and Vitalij Ruge, gave valuable hints for the design
of this custom annotation proposal.

References
Blochwitz T., Otter M., Arnold M., Bausch C., Clauß C.,

Elmqvist H., Junghanns A., Mauss J., Monteiro M.,
Neidhold T., Neumerkel D., Olsson H., Peetz J.-V., Wolf
S. (2011): The Functional Mockup Interface for Tool
independent Exchange of Simulation Models.
Proceedings of the 8th International Modelica Conference,
Dresden, March 20-22, pp. 105-114. Download:
http://www.ep.liu.se/ecp/063/013/ecp11063013.pdf

Blochwitz T., Otter M., Akesson J., Arnold M., Clauß C.,
Elmqvist H., Friedrich M., Junghanns A., Mauss J.,

Neumerkel D., Olsson H., Viel A. (2012): Functional
Mockup Interface 2.0: The Standard for Tool
independent Exchange of Simulation Models.
Proceedings of the 9th International Modelica Conference,
September 3-5, Munich, pp. 173-184. Download:
http://www.ep.liu.se/ecp/076/017/ecp12076017.pdf

Burstall R., Strachey C. (2000): Understanding Programming
Languages. Higher-Order and Symbolic Computation 13
:52.

Coward D (2004). JSR 175: A Metadata Facility for the
JavaTM Programming Language. Java Community
Process. https://www.jcp.org/en/jsr/detail?id=175#2
(Retrieved 2013-12-09).

Dassault Systèmes (2014): Dymola 2015 Alpha.
http://www.Dymola.com

Modelica Association (2013): The Modelica Language
Specification, Version 3.3. Download:
https://www.modelica.org/documents/ModelicaSpec33.pd
f.

Zimmer D. (2008): Multi-Aspect Modeling in Equation-Based
Languages. Simulation News Europe, Volume 18, No. 2,
pp. 54-61

Zimmer D. (2009): An Application of Sol on Variable-
Structure Systems with Higher Index. 7th International
Modelica Conference, Como, Italy.

Zimmer D. (2012): A Reference-Based Parameterization
Scheme for Equation-Based Object-Oriented
Modeling Languages. 7th Vienna International
Conference on Mathematical Modelling, Vienna, Austria.

Custom Annotations: Handling Meta-Information in Modelica

182 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096173

