
Modelica extensions for Multi-Mode DAE Systems

Hilding Elmqvist1, Sven Erik Mattsson1, Martin Otter2
1Dassault Systèmes AB, Ideon Science Park, SE-223 70 Lund, Sweden

2German Aerospace Center (DLR), Institute of System Dynamics and Control,
D-82234 Wessling, Germany,

Hilding.Elmqvist@3ds.com, SvenErik.Mattsson@3ds.com, Martin.Otter@dlr.de,

Abstract
This paper describes a proposal for modeling sys-
tems with multiple operating modes, such as chang-
ing a controller from nominal operation to startup or
shutdown or describing failure situations where the
model structure is changing (e.g. an electrical line or
a mechanical shaft breaks). This is achieved by ex-
tending the Modelica 3.3 synchronous state ma-
chines to continuous-time state machines having
continuous-time models as “states”. Every model can
be a “state” of a state machine, and in particular cer-
tain acausal models. Currently, no new language el-
ement is needed for Modelica, but a generalized se-
mantics for state machines has to be introduced, such
as “merge semantics for differential equations“.
Symbolic transformations are still handled during
translation, so the generated code is efficient and
there is no run-time interpreter. On the other, this
feature restricts the class of multi-mode systems that
can be handled.

Keywords: Multi-mode, failure simulation, dynami-
cally changing states, continuous-time state ma-
chine, hybrid state machine.

1 Introduction
The intention is to extend the scope of Modelica and
model and simulate systems with multiple operating
modes1. Examples:
 Changing a controller from nominal operation to

startup, shutdown or manual operation.
 Structural changes of a physical model (e.g.

modeling the separation mechanism of a two or
three stage rocket).

 Describing failure situations where the model
structure is changing (e.g. an electrical line or a
mechanical shaft breaks).

1 Section 1 and 2 of this article are an updated version of the
internal report D4.1.2-M12 from the ITEA2 project MODRIO.
The rest of this article is new material.

 Describing failure situations where the model is
completely changing (e.g. the normal behavior
of a pump is a 0D model. In case of cavitation, a
1D model is needed to describe physics, requir-
ing to switch dynamically from a 0D to a 1D
model when cavitation occurs).

In general this means that the number of continuous-
time states of the model might change dynamically
during the simulation. Such models cannot be de-
scribed with current Modelica, version 3.3 (Modelica
Association, 2012), since in this case the basic re-
quirement is that the number of continuous-time
states of a model is fixed during a simulation.

The basic idea for multi-mode modeling is to ex-
tend the Modelica 3.3 synchronous state machines
(Elmqvist et. al., 2012) to continuous-time state ma-
chines having continuous-time models as “states”.
Every model can be a “state” of a state machine, in-
cluding acausal models, such as a capacitor, or a ro-
tational inertia. The number of continuous-time state
variables can change at a transition of a state ma-
chine. No new Modelica language element is needed,
but a generalized semantics for state machines has to
be introduced, such as “merge semantics for differ-
ential equations“. The concepts have been evaluated
with a Dymola prototype (Dassault Systèmes, 2014).

A related paper (Bouissou et. al., 2014) discusses
the use of continuous-time state machines in Modeli-
ca for the modeling of stochastic hybrid systems by
means of Piecewise Deterministic Markov Processes
(PDMP). It focuses on how to handle the case when
the transitions on continuous-time state machines
depend on stochastic transitions.

Modeling state machines with differential equa-
tions in the states is a well-known approach in au-
tomata theory, called hybrid automata, see e.g. (Hen-
zinger 1996). Such an approach is only of limited use
when modeling physical systems, even if the Ordi-
nary Differential Equations (ODEs) on a state are
extended to Differential-Algebraic Equations
(DAEs): The user has to enumerate all different con-
figurations of a system and has to provide the equa-

DOI
10.3384/ECP14096183

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

183

tions for every configuration and also provide all the
details to switch between these configurations, see
also next section.

MOSILAB (Bastian et. al., 2010) from Fraunho-
fer is an extension to Modelica by introducing con-
tinuous-time statecharts in Modelica and supporting
DAEs on the states. This approach has similar draw-
backs as hybrid automata, but is more powerful as
hybrid automata due to the usage of Modelica.

Sol (Zimmer, 2010) is an experimental language
to model variable structure systems with index
changes. The large flexibility requires an interpreter
for the simulation: Whenever the DAE index of a
system is changed during simulation, the relevant
equations of the model are newly symbolically pro-
cessed and especially also newly index-reduced. The
advantage is that a very large class of physical sys-
tems with variable structure can be described. The
drawback is that an interpreter is needed at run-time,
considerably reducing the simulation efficiency.

The approach presented in this paper introduces
certain restrictions on what kind of changes can be
made to the model at a mode change. This allows
symbolic transformations still to be handled during
translation, so the generated code is efficient and
there is no run-time interpreter.

2 Continuous-time state machines
with causal blocks

2.1 Synchronous state machines

In Modelica 3.3 (Modelica Association, 2012) syn-
chronous state machines are defined. These state ma-
chines are only executed as sampled data systems.
From the specification:

Any Modelica block instance without continuous-
time equations or algorithms can potentially be a
state of a state machine. A cluster of instances which
are coupled by transition statements makes a state
machine. All parts of a state machine must have the
same clock. All transitions leaving one state must
have different priorities. One and only one instance
in each state machine must be marked as initial by
appearing in an initialState statement.

2.2 Continuous-time state machines

In order to define multi-mode systems, the basic idea
is to generalize the clocked state-machines from
Modelica 3.3 to continuous-time. In a first step, two
cases are distinguished:

1. All states and transitions of one state machine
are clocked and belong to the same clock
(= semantics in Modelica 3.3).

2. All states and transitions of one state machine
are continuous-time (= new, additional seman-
tics; discussed below).

In this section we only consider “causal” continuous-
time systems, that is, the “states” must be “blocks”
with defined “input” and “output” variables. As a
result, every “state” block can be separately symbol-
ically processed (such as BLT partitioning) assuming
that all its inputs, pre(..) and arguments of
der(..) are known and all other variables, especial-
ly outputs, der(..), and arguments of pre(..) are
unknown. Therefore, from a conceptual point of
view a “state” is a set of ordinary differential equa-
tions (ODE) with known inputs ܝ and states ܠ and of
explicit algebraic equations with unknown outputs ܡ
computed in the block: ܠሶ = ,ܠ)܎ ,ܝ ܡ (ݐ = ,ܠ)܏ ,ܝ (ݐ

The outgoing transitions of the active state of a state
machine are Boolean conditions that are continuous-
ly monitored and are transformed to event indicator
signals (also called zero-crossing functions) that sig-
nal an event when the Boolean condition changes its
value. At this time instant the numerical integration
is stopped, the state machine switches to the new
“state” and the ODE of this new state is either re-
started or continues from the previous value of its
continuous-time state variables when the “state” was
active the last time.

As a simple example consider the continuous-
time state machine in Figure 1 with two “states”.
This state machine consists of “states” that consist of
completely unrelated blocks (in the upper “state” it is
a drive train with clutches, and in the lower “state” it
is a controlled electrical motor with load). At the
start of the simulation the upper state is active and
the drive train is simulated. At time = 1.5 s, the
simulation of the drive train is stopped and the con-
trolled electrical motor block starts simulating.

As can be seen, the number of continuous-time
states changes dynamically during simulation and the
state machine switches between unrelated models.
There is the restriction that every “state” block needs
to have a full initialization definition (e.g., starting
from given start values of the continuous-time states,
or starting from a steady-state condition which re-
quires to solve a nonlinear algebraic equation system
when the block becomes active the first time). When
a “state” block is activated the first time, the initiali-
zation equations are first evaluated before the simu-

Modelica extensions for Multi-Mode DAE Systems

184 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096183

lation of the block is started. When a “state” block is
re-entered, the block is re-initialized if the reset flag
is set in the transition. Otherwise, the block contin-
ues from the values of the continuous-time variables
state of the previous activation.

Figure 1: Continuous-time state machine

2.3 Hybrid automata

The system in Figure 1 is practically not very useful,
since signal values are not exchanged between the
different “state” blocks. More useful state machines
are the already mentioned hybrid automata, see for
example (Henzinger 1996). A simple example is
shown in Figure 2 and Figure 3:

Figure 2: Hybrid automata with “a” as input signal.

On every “state” an ODE is present. The transition
conditions consist of trigger conditions when to
switch the state (e.g. “[ݔ ≥ 3]”). Furthermore, at the
transition it is defined in which way to reset the state
of the ODE (e.g. “/x:=1” means that continuous-
time state x is reset to 1, before entering the target
“state”). In the Dymola prototype, this state

Figure 3: Solution of the hybrid automata from

Figure 1 with a = time > 2.5”.

Figure 4: Hybrid automata from Figure 1 modeled

in Modelica with indirect reset.

machine can be modeled with the proposed Modelica
extension according to Figure 4. Here, every “state”
is a block that contains the differential equation.
Note, the same continuous-time state variable “x” is
used in all “states” (called “mode1”, “mode2”,
“mode3” here), because this variable is defined with
“outer output” in the mode blocks. Additionally,
the start value xstart of the state is reported via
inner/outer to all mode blocks. The expected se-
mantics is that whenever entering a “state” and the
reset flag in the transition is set, then the differential
equation is newly initialized with the actual start val-
ue of “x”.

The current semantics of the prototype implemen-
tation in Dymola is that when an immediate transi-
tion is used, the equations are activated once before
the reset is made. This explains why xstart is mod-
ified in the destination state. The use of the con-
struct:
 inner Real xstart(start=1, fixed=true);
 inner Real x(start=xstart, fixed=true);

0 5 10
0

2

4

mode
0 5 10

0

2

4

x

Session 1E: Modelica Language & Compiler Implementation

DOI
10.3384/ECP14096183

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

185

is not standard Modelica since the variability of the
start attribute is parametric. To allow any variability
of the start expression would be one possible exten-
sion to Modelica to solve the re-initialization prob-
lem. However, the solution of using a “global” vari-
able xstart is not elegant and is error prone. It would
be better to allow such information for re-
initialization to be associated with the transition. Fur-
ther investigations are needed for designing the
“right” extension.

Similarly as for clocked synchronous state ma-
chines, also for continuous-time state machines the
“single assignment rule” holds for every variable.
This means that variables in the different “states”
must be merged. The merge-semantics for algebraic
variables is identical to the merge-semantics of
clocked synchronous state machines (see section
17.3.5 of the Modelica 3.3 specification). Variables
that appear in the derivative operator, der(..), are
merged in the following, equivalent way:

der(x) := if activeState(state1) then
 expr1
 elseif activeState(state2) then
 expr2
 elseif
 ...
 else last(der(x))

This means that in the example above, the equations
for der(x) in the different “state” blocks are merged
into the following single statement:
der(x) := if activeState(mode1) then
 1
 elseif activeState(mode2) then
 -x
 elseif activeState(mode3) then
 1 + sin(time+0.5)
 else last(der(x))

3 Continuous-time state machines
with acausal models

Hybrid automata are of limited use for physical sys-
tem modeling, because the equations have to be first
manually transformed into an input-output block and
this is inconvenient and might be non-trivial. Fur-
thermore, the graphical representation in an object
diagram might be “not nice” due to input and output
connections in a diagram that uses physical, that is
acausal, connectors otherwise. Therefore, from a us-
er point of view, it is important to support acausal
models as “states”. In general this is non-trivial, be-
cause different “states” may require different sym-
bolic handling of the equations in the environment
since causality and the DAE index might change be-
tween “states” of a state machine. However, a quite

large class of acausal model “states” have been iden-
tified that can be reasonably handled.

As an example, consider the electrical circuit with
two state machines in Figure 6. In the upper part of
the electrical circuit a diode model is present as a
“state”. At “time > 0.9” this state is left and state
“brokenDiode” is activated consisting of a resistor
with a large resistance. Note, that the “states” have
“electrical pins” from which they are connected with
the rest of the circuit. In the lower right part of the
circuit diagram, another state machine is present. It
consists of a capacitor “state” (modeled as a resistor
in series with an ideal capacitor model).

At time = 0.3s, the hardware configuration is
changed and the state switches to state “R2” consist-
ing of a small resistance. At time 0.7s, the configu-
ration is switched back. Note, that in this second case
the number of continuous-time states is changing
when switching.

In the rest of this section, the new method is de-
scribed that allows us to handle such systems in an
efficient way.

Figure 5: Circuit with two acausal state machines.

Figure 6: Simulation result of the circuit of Figure 5.

0.0 0.5 1.0

-0.05

0.00

0.05

0.10

0.15

 [A]

load.i

Modelica extensions for Multi-Mode DAE Systems

186 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096183

3.1 Basic idea for symbolic processing

The basic idea to symbolically process continuous-
time state machines with physical connectors is ex-
plained at hand of the simple example in Figure 7.
This circuits contains a state machine with two
states, capacitor C (state 1) and resistor R2 (state 2).
The simulation starts with capacitor C and after 0.5 s
the state machine is switched to the resistor R2. Con-
ceptually, the same behavior can be achieved with
the Modelica model shown in Figure 8 where the
models of the two previous two states are connected
together with a special switch explained below.

Figure 7: Simple circuit with an acausal state ma-
chine.

Figure 8: Simple circuit from Figure 7 implemented
with special switches using standard Modelica.

Via the Integer input state to the switches it can be
defined whether pin n1 or pin n2 is connected to pin
p. In the circuit from above, it is defined as:

 Integer state = if time <= 0.5 then 1
 else 2;

The effect of the two switch positions is demon-
strated in Figure 9. If in state 1, the capacitor C

is connected with the rest of the circuit. The resistor
R2 is connected with small (dummy) conductances to
ground. This is necessary, because otherwise R2
would be “floating” and there would be missing
equations for voltages. The currents into the pins
would be zero since no environment would be at-
tached. However, it is already stated in the resistor
that the currents sum to zero. So there would be one
equation too much for currents.

If in state 2, the resistor R2 is connected with the
rest of the circuit. The capacitor C is connected with
small (dummy) conductances to ground, similarly as
the resistor in state 1.

It is clear that both configurations can be simulat-
ed with a standard Modelica simulator and that the
variables of the “active” state will have identical re-
sults to the “active” state of the circuit in Figure 7. In
order to achieve this behavior, the special switch
models of Figure 8 need to be defined as:

Configuration if state = 1

Configuration if state = 2

Figure 9: The two configurations of the simple cir-
cuit from Figure 8.

Session 1E: Modelica Language & Compiler Implementation

DOI
10.3384/ECP14096183

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

187

 // Equation for potential variables
 p.v = if state==1 then n1.v else n2.v;

 // Equation for flow variables
 0 = p.i + (if state==1 then n1.i
 else n2.i);

 // Equation for not connected state
 0 = if state==1 then Gsmall*n2.v-n2.i
 else Gsmall*n1.v-n1.i;

There are different variants to formulate the equa-
tions of this switch. The variant above has the ad-
vantage that one equation depends only on potential
variables, but not on flow variables, and one equa-
tion depends only on flow variables and not on po-
tential variables. This is the same principal structure
as for every single configuration. For example, as-
sume that in both configurations the potential varia-
ble equations need to be differentiated (due to a con-
straint between states). If in this case the combined
potential variable equation of the switch is differen-
tiated, then no flow variables are differentiated be-
cause the equation contains only potential variables.

The basic idea to handle acausal state machines
can now be sketched:

(1) Connect statements from the outside of a state
machine to connectors on the states of a state
machine are replaced by the equations of the
special switch statement above.

(2) All state machine states are removed and the
equations of all states and all transitions are add-
ed to the rest of the model. The result is a stand-
ard DAE according to current Modelica.

(3) The standard symbolic transformation algo-
rithms are applied on this resulting DAE, such as
Pandelides algorithm (Pantelides 1988), BLT,
dummy derivative method (Mattsson and Söder-
lind 1993).

(4) When generating code, all equations originally
belonging to a state are de-activated (are not
evaluated), when this state is not active. Fur-
thermore, all continuous-time state variables
from all non-active states are removed from the
integrator2.

Note, applying rules (1) and (2) on the example from
Figure 7 results in the circuit of Figure 8. Due to
rule (4), the code for the dummy conductors will not
be executed and therefore the values of the conduct-
ances do not matter. The conductors are only im-
portant during the symbolic transformation phase

2 A simple way to not integrate over deactivated states is to just
report to the integrator that the derivatives of these states are
zero, and otherwise keep the dimension of the state vector.

where structural properties of the equations are uti-
lized.

Since the symbolic processing might differentiate
equations and/or might lead to linear or non-linear
systems of equations, this means, that also equations
on states might be differentiated or algebraic systems
of equations over states and non-states might be pre-
sent.

In the rest of this paper, the above sketch is more
formally defined, consequences and limitations are
discussed and several examples are presented.

3.2 Mapping physical connections to equations

In this section it is defined how the connect(..)
statement of Modelica is mapped to equations if one
of the arguments is a connector on a state of a state
machine.

3.2.1 Connections between states of one
state machine

Requirement 1:
It is not allowed to have a connection set where
all connectors of the set belong to the same state
machine and at least two connectors are on dif-
ferent states of this state machine.

Note, the states of a state machine are mutually ex-
clusive. If there are connections between mutually
exclusive states of a state machine, then the connec-
tion will never have an effect (because always only
one connector will be active), and there will be miss-
ing equations.

3.2.2 Connections between single potential-flow
variable pairs

Assume a connector ܿ௜ present on a state ݅ is defined
by one potential variable ݌௜ and one flow variable ௜݂
and that ݊ of these connectors from the same state
machine are connected to connectors outside of this
state machine.

A virtual connection node ܿ଴ is (conceptually) in-
troduced outside of the state machine. All connec-
tions from ܿ௜ to connectors outside of the state ma-
chine are replaced by connections to ܿ଴ and connec-
tions from ܿ଴ to the original targets. As a result, the
following connect statements will be present (the
connect statements to the targets are handled accord-
ing to current Modelica):

connect(ܿ଴, ܿଵ)
connect(ܿ଴, ܿଶ)

 ...
connect(ܿ଴, ܿ௡)

Modelica extensions for Multi-Mode DAE Systems

188 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096183

These connect statements are replaced by the follow-
ing equations, where ݅ characterizes the active state:

Mapping Equations 1: ࢖ = ,ଵ݌] ,ଶ݌ ⋯ , ࢌ ்[௡݌ = [ଵ݂, ଶ݂, ⋯ , ௡݂]் ݅ = activeState() ݌଴ = 0 [݅]࢖ = ଴݂ + ݆ for [݅]ࢌ = 1: ݊ − 1 ݇ = mod(݅ + ݆ − 1, ݊) + 1 0 = ௦௠௔௟௟ܩ ∙ [݇]࢖ − [݇]ࢌ
Note, the for-loop generates ݊ − 1 dummy equations
describing a linear relationship between the potential
and flow variables of the connectors on the states
that are not active. Due to this mapping, the connect
equations have the following structural dependency: 0 = ݃ଵ(݌଴, ,࢖ ݅) 0 = ݃ଶ(଴݂, ,ࢌ ݅) 0 = ,࢖)ଷ:௡ାଵࢍ ,ࢌ ݅)

These are ݊ + 1 equations for ݊ + 1 connectors,
where

 one equation depends on all potential variables
of the connection set and on the active state,

 one equations depends on all flow variables of
the connection set and on the active state,

 ݊ − 1 equations depend on all potential and all
flow variables of the connectors that are on the
state machine and on the active state.

The equations ࢍଷ:௡ାଵ are in principal only relevant
for the symbolic analysis. During simulation, these
equations are never evaluated, because they are deac-
tivated for the active state.

If these equations appear in an algebraic loop, a
simple implementation might just compute the solu-
tion without taking into account that the equations
are deactivated and then ignore the computed value
for the deactivated variables. In this case the value of ܩ௦௠௔௟௟ matters because the value is used during the
solution of the equation system, and if the value be-
comes too small, the Jacobian of the equation system
may become badly conditioned. In this case ܩ௦௠௔௟௟
should be in the order of the other elements of the
equation Jacobian (or if this information is not
known, ܩ௦௠௔௟௟ = 1 might be used).

An efficient implementation requires to rewrite
algebraic equation systems when a new state be-
comes active. For example, assume a linear system
of equations is present during simulation and for
state ݅ = 1 it has the form:

቎࡭ଵଵ ଵଶ࡭ ଵଷ૙்࡭ ௦௠௔௟௟ܩ ଷଵ࡭1− ଷଶ࡭ ଷଷ࡭
ଷସ቏࡭ଵସ૙்࡭ ∙ ൦ࢠଵ݌ଶ݂ଶࢠଷ൪ = ቈ⋯⋯⋯቉

Since the variables and equations of state ݅ = 2, es-
pecially ݌ଶ, ଶ݂, are deactivated (and the variables
hold their values) if this state is not active, this linear
system of equation can be simplified for state ݅ = 1
to: ൤࡭ଵଵ ଷଵ࡭ଵସ࡭ ଷସ൨࡭ ∙ ቂࢠଵࢠଷቃ = ቂ⋯⋯ቃ

With this type of equation handling, ࢍଷ:௡ାଵ are nev-
er evaluated during simulation and the value for ܩ௦௠௔௟௟ does not matter.
Note, when implementing a generic switch for ݊
connectors, the “Mapping Equations 1” can be com-
pactly defined in Modelica:

 input Integer state;
 parameter Integer nStates;
 Pin p, n[nStates]
equation
 p.v = n[state].v;
 0 = p.i + n[state].i;
 zeros(nStates-1) = {Gsmall*
 n[mod(state+i-1, nStates)+1].v -
 n[mod(state+i-1, nStates)+1].i
 for i in 1:nStates-1};

3.2.3 Connections between
input-output connectors

Assume state ݅ of a state machine is an input-output
block with an input ݑ௜ and an output ݕ௜ and that ݊ of
these connectors from the same state machine are
connected to connectors outside of this state machine
– from a node ݑ଴ to the inputs ݑ௜ and from the out-
puts ݕ௜ to a node ݕ଴. This means that the following
connect statements are present:

connect(ݑ଴, (ଵݑ
connect(ݑ଴, (ଶݑ
 ...
connect(ݑ଴, (௡ݑ

connect(ݕଵ, (଴ݕ
connect(ݕଶ, (଴ݕ
 ...
connect(ݕ௡, (଴ݕ

These connect statements are replaced by the follow-
ing equations, where ݅ characterizes the active state:

Mapping Equations 2: ࢛ = ,ଵݑ] ,ଶݑ ⋯ , ࢟ ்[௡ݑ = ,ଵݕ] ,ଶݕ ⋯ , ࢛ ்[௡ݕ = ଴ݑ ∙ ones(݊)ݕ଴ = [()activeState]࢟
These are ݊ + 1 equations for ݊ + 1 connections.
When a state ݆ is not active, an arbitrary value can be
provided for its input ݑ௝. For simplicity, just the

Session 1E: Modelica Language & Compiler Implementation

DOI
10.3384/ECP14096183

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

189

overall input ݑ଴ is provided, so ݑ௝ = -଴. Again, beݑ
cause equations on not active states are deactivated
during simulation, these equations are only present
during the symbolic transformation, but not during
run-time. Therefore, the actually provided value for
the input does not matter. Additionally, to the map-
ping rules above, the standard input-output semantic
restrictions (e.g. an output can be only connected to
one input), must be relaxed, so that this rule holds
only for the active state, but not for deactivated
states.

In Figure 10 an example with two input-output
blocks is given: The simulation starts with block
firstOrder, a first order block. When time > 0.5,
the state machine switches to block secondOrder.
Entering seondOrder re-initializes the block to the
output of state firstOrder (more details on re-
initialization are given in section 3.3).

Figure 10: State machine switching between two in-
put-output blocks.

Simulation results are shown in Figure 11. Here a
first order behavior is seen for the first 0.5 s. After-
wards a second order behavior occurs.

Figure 11: Simulation results of the state machine of
Figure 10.

3.2.4 Equation rewriting to enhance efficiency

The approach from section 3.2.2 might lead to alge-
braic equation systems where the size of the systems
is unnecessarily large. In some cases these sizes
might be reduced with the following rewriting rules
for connect equations:

First, run the Pantelides algorithm (Pantelides 1988)
and perform the BLT (Block Lower Triangular)
transformation on the differentiated problem.

Second, if the following equations of one connection
set (see “Mapping Equations 1”), ݌଴ = 0 [݅]࢖ = ௦௠௔௟௟ܩ ∙ [݇]࢖ − [݇]ࢌ
or their differentiated form, appear in an algebraic
equation system having all potential variables ࢖[݇]
as unknowns, but not the flow variables 3[݇]ࢌ, then
the equations above can be reformulated to: for ݅ = 1: [݅]࢖ ݊ = ([݅]࢖)ܜܛ܉ܔ ܍ܛܔ܍ ଴݌ ܖ܍ܐܜ (݅)activeState ܎ܑ

where ([݅]࢖)ܜܛ܉ܔ is the value of ࢖[݅] when state ݅
was active the last time (so it is a known value).

The proof for this rewriting is given for ݊ = 2. For ݊ > 2, similar arguments can be given. So, assume ݊ = 2. Then, the equations from the connect-
statements have the following form for the different
states, according to “Mapping Equations 1”: if activeState(1) then ݌଴ = ଵ 0݌ = ଴݂ + ଵ݂ 0 = ௦௠௔௟௟ܩ ∙ ଶ݌ − ଶ݂ else ݌଴ = ଶ 0݌ = ଴݂ + ଶ݂ 0 = ௦௠௔௟௟ܩ ∙ ଵ݌ − ଵ݂ end if
Since it is assumed that the flow variables ଵ݂ and ଶ݂
are known (are computed somewhere else), the
dummy conduction equations can be solved for the
potential variables (e.g. ݌ଶ: = ଶ݂/ܩ௦௠௔௟௟). This
means that for the non-active states, the potential
variables are known. Instead of computing them by a
dummy conduction equation, alternatively another
known value can be used (because all equations of
non-active states are anyway de-activated) and espe-
cially ([݅]࢖)ܜܛ܉ܔ. As a result, the equations above are
equivalent to:

3 The flow variables do not appear in the algebraic loop if all are
continuous-time states or are computed from continuous-time
states.

Modelica extensions for Multi-Mode DAE Systems

190 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096183

if activeState(1) then ݌଴ = ଵ 0݌ = ଴݂ + ଵ݂ ݌ଶ = ଴݌ else (૛݌)ܜܛ܉ܔ = ଶ 0݌ = ଴݂ + ଶ݂ ݌ଵ = end if (ଵ݌)ܜܛ܉ܔ
This equation set is in turn equivalent to: ݌ଵ = if activeState(1) then ݌଴ ܜܛ܉ܔ ܍ܛܔ܍(݌ଵ) ݌ଶ = if activeState(2) then ݌଴ ܜܛ܉ܔ ܍ܛܔ܍(݌ଶ) 0 = ଴݂+ if activeState(1) then ଵ݂܍ܛܔ܍ ଶ݂

and the proof is complete.

After re-writing the equations, all symbolic algo-
rithms are re-run. Usually, the equation systems will
become smaller, since the equations depend now
only on two variables, and not on many variables.
Intuitively this rewriting means that ݌଴ is computed
outside of the state machine and propagated to the
states of the state machine. Therefore, the previous
algebraic loop over all the states is broken. A prereq-
uisite for this rewriting is that for all non-active
states it is sufficient to treat the potential variables as
inputs. A sufficient condition for this to be possible
is that the flow variables have been already comput-
ed somewhere else.

In a similar way, the equations can be rewritten, if
the flow variable equation and the dummy conductor
equations are in an algebraic loop.

3.3 Re-Initialization

When changing from one state to another one, the
DAE of the target state must usually be initialized.
This is basically performed with the methods from
section 2.3 as demonstrated at hand of the example
in Figure 12. This example models a drive train,
where a rotational inertia breaks during the opera-
tion. In particular, this models consists of

 a state1 with inertia1 and J=10,

 a state2 with inertia2a (J=9) and inertia2b
(J=1) that are not connected,

 an inertia3 outside of the state machine that is
connected to inertia1 and inertia2a and is
driven by a step torque4, and

 a spring-damper that is connected to inertia1
and inertia2b.

At time = 0.5, the state machine switches from
state1 to state2 and therefore inertia1 is re-
placed by two unconnected inertias that have togeth-
er the same moment of inertia as inertia1. In other
words, the “breaking” of inertia1 is modelled.
Note, that the number of continuous-time states is
changing (there are 2 continuous-time state when in
state1 and 4 when in state2).

With the generation of connect equations in sec-
tion 3.2 and the sketched symbolic processing of the
overall DAE, this system gives rise to index reduc-
tion between inertia3, inertia1 and inertia2a

4 inertia3 is only present to demonstrate index reduction and
algebraic loops over a state machine

Figure 12: Breaking inertia that requires index reduction and algebraic loop handling over a
state machine, as well as re-initialization when entering state2.

Session 1E: Modelica Language & Compiler Implementation

DOI
10.3384/ECP14096183

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

191

and due to this index reduction an algebraic loop be-
tween equations of these components are present.
The Dymola prototype handles this correctly.

When switching from state1 to state2, iner-
tia1 has some angle and angular velocity and the
inertias on state2 need to be appropriately initial-
ized. Since inertia2a is rigidly attached to iner-
tia3, no initialization of inertia2a is needed.
However, the continuous-time states of inertia2b
need to be initialized to the states of inertia3. This
is performed in the following way:

 inner Real phi(start=0, fixed=true) =
 inertia3.phi;
 inner Real w(start=0,fixed=true) =
 inertia3.w;
 ...
 // in state2
 import R=Modelica.Mechanics.Rotational;
 outer Real phi;
 outer Real w;
 R.Components.Inertia inertia2b(J=1,
 phi(start=phi, fixed=true),
 w(start=w , fixed=true));

On the top level the inner variables phi and w are
associated with the corresponding variables of iner-
tia3. In state2 these variables are declared as
outer and used as start values for inertia2b.
The semantics is that when state2 is entered, then
the variables of state2 are re-initialized to their
start values. A result plot of the angular velocities of
the inertias on the two states is shown in Figure 13.

Figure 13: Simulation result for the breaking inertia
of Figure 12.

As can be seen, the amplitude and frequency of in-
ertia2b increases with respect to inertia1, be-
cause its moment of inertia is much smaller.

3.4 Limitations

The question arises which types of models cannot be
handled with the proposed approach? First, inde-
pendently of the symbolic algorithms used, the map-

ping of connect statements to equations as defined in
section 3.2 is always correct. It is clear that there
must be limitations when applying the standard sym-
bolic algorithms on the resulting set of equations,
because the structure of the equations depends on the
active state and this dependency is not taken into
account by the standard algorithms. For example
assume that the following equation is present

 p.v = if state==1 then n1.v else n2.v

when mapping some connect statements to equa-
tions. Assume that p.v and n1.v are states, but n2.v
is not. Then this state constraint is not detected and
n2.v is always computed from p.v and from n1. Of
course, this will fail (will give a division by zero) in
state 1. The correct handling would be that in state 1
the equation p.v = n1.v is present and if both vari-
ables are states, this equation must be differentiated.
However, the standard algorithms do not take this
into account and it seems also non-trivial to general-
ize.

In Figure 14 there is a state machine with a ca-
pacitor C1 and a resistor R2 . These two states are
connected in parallel to a capacitor C2. This model
cannot be handled with the proposed method (and
will give a run-time error that a matrix is singular),
because in the capacitor state there is a state variable
constraint between C1 and C2 and in the resistor state
there is no such state constraint.

Figure 14: Parallel capacitors that cannot be han-
dled due to different state constraints in the different
states.

In Figure 15 there is a state machine with a connec-
tion of two flanges in state1 and no connection in
state2 (this is defined by connecting zero-torques
to the two flanges). This state machine is placed be-
tween two inertias. The model describes a breaking
inertia in a more natural formulation as in Figure 12.
This model cannot be handled with the proposed
method (and will give a run-time error that a matrix
is singular), because in state1 there is a state con-
straint between inertia1 and inertia2 and in
state2 there is no such state constraint.

Modelica extensions for Multi-Mode DAE Systems

192 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096183

Figure 15: Breaking inertia that cannot be handled
due to different state constraints in the different
states.

It is not nice that such models lead to an error only
when simulating the model. It is also difficult to de-
duce the source of the problem from an error mes-
sage stating that a matrix is singular. In principal, the
diagnostics can be improved, so that such errors oc-
cur during translation with an understandable error
message:

The sorted equations are inspected and every al-
gebraic equation system that depends on a state of a
state machine is processed again: The equations of
an algebraic equation system are partitioned (so the
assignment algorithm is applied) for every state ma-
chine state taking into account the equation structure
of the particular state only. If one of the assignments
fails, the equation system is structurally singular for
the selected state and therefore the model cannot be
handled.

4 Conclusions
A proposal is presented for modeling variable struc-
ture systems with dynamically changing number of
states in Modelica by extending the synchronous
clocked state machines to continuous-time state ma-
chines. With this extension it is straightforward to
model hybrid automata. However, hybrid automata
are not practical to use for physical system modeling.
A novel extension is proposed to use acausal models
as states of a state machine. By mapping connections
to connectors on a state machine in a particular way
on equations, the standard symbolic processing for
Modelica models can be applied. This approach al-
lows already handling a large class of useful variable
structure systems with dynamically changing sizes of
continuous-time states.

Models cannot be handled with this new method,
if connections between state and non-state compo-
nents lead to constraints on continuous-time state

variables that vary for the different state machine
states.

The proposal is not yet complete. Especially,
mappings for all connector types of Modelica need to
be still defined, especially for multi-body and for
fluid systems. Additionally, the switching between
DAEs may lead to Dirac impulses, if not properly re-
initialized (or it must be modelled in a way that im-
pulses occur, due to the underlying approximation of
the reality). Furthermore, algebraic equation systems
over states need to be analyzed in more detail, espe-
cially in combination with the dummy derivative
method. It is planned to work on these topics in the
near future.

Acknowledgements
This paper is based on research performed within the
ITEA2 project MODRIO. Partial financial support of
the Swedish VINNOVA and the German BMBF for
this development are highly appreciated.

References
Bastian J., Clauß C., Enge-Rosenblatt O., and Schneider P.

(2010): MOSILAB – a Modelica solver for multi-physics
problems with structural variability. 1st Conference on
Multiphysics Simulation - Advanced Methods for
Industrial Engineering 2010. Download:
http://publica.fraunhofer.de/starweb/servlet.starweb?path=u
rn.web&search=urn:nbn:de:0011-n-1355711

Dassault Systèmes (2014): Dymola 2015 Alpha.
http://www.Dymola.com

Elmqvist H., Gaucher F., Mattsson S.E., Dupont F. (2012): State
Machines in Modelica. Modelica'2012 Conference,
Munich, Germany, Sept. 3-5, 2012. Download:
http://www.ep.liu.se/ecp/076/003/ecp12076003.pdf

Bouissou M., Elmqvist H., Otter M., and Benveniste A. (2014):
Efficient Monte Carlo simulation of stochastic hybrid
systems. Modelica'2014 Conference, Lund, Sweden,
March 10-12.

Henzinger T.A. (1996): The Theory of Hybrid Automata.
Proceedings of the 11th Annual IEEE Symposium on
Logic in Computer Science (LICS 96), pp. 278-292.

Mattsson, S.E. and G. Söderlind (1993): Index reduction in
differential-algebraic equations using dummy
derivatives. SIAM Journal of Scientific and Statistical
Computing, Vol. 14 pp. 677-692.

Modelica Association (2012): The Modelica Language
Specification, Version 3.3. Download:
https://www.modelica.org/documents/ModelicaSpec33.pdf.

Pantelides C. (1988): The consistent initialization of
differential-algebraic systems. SIAM Journal of
Scientific and Statistical Computing, 9(2), pp. 213–231.

Zimmer D. (2010): Equation-Based Modeling of Variable-
Structure Systems. Dissertation, ETH Zürich, No. 18924.
Download:
http://www.inf.ethz.ch/personal/fcellier/PhD/zimmer_phd.p
df

Session 1E: Modelica Language & Compiler Implementation

DOI
10.3384/ECP14096183

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

193

