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Abstract 
This paper describes a proposal for modeling sys-
tems with multiple operating modes, such as chang-
ing a controller from nominal operation to startup or 
shutdown or describing failure situations where the 
model structure is changing (e.g. an electrical line or 
a mechanical shaft breaks). This is achieved by ex-
tending the Modelica 3.3 synchronous state ma-
chines to continuous-time state machines having 
continuous-time models as “states”. Every model can 
be a “state” of a state machine, and in particular cer-
tain acausal models. Currently, no new language el-
ement is needed for Modelica, but a generalized se-
mantics for state machines has to be introduced, such 
as “merge semantics for differential equations“. 
Symbolic transformations are still handled during 
translation, so the generated code is efficient and 
there is no run-time interpreter. On the other, this 
feature restricts the class of multi-mode systems that 
can be handled. 

Keywords: Multi-mode, failure simulation, dynami-
cally changing states, continuous-time state ma-
chine, hybrid state machine. 

1 Introduction 
The intention is to extend the scope of Modelica and 
model and simulate systems with multiple operating 
modes1. Examples: 
 Changing a controller from nominal operation to 

startup, shutdown or manual operation. 
 Structural changes of a physical model (e.g. 

modeling the separation mechanism of a two or 
three stage rocket). 

 Describing failure situations where the model 
structure is changing (e.g. an electrical line or a 
mechanical shaft breaks). 

                                                      
1 Section 1 and 2 of this article are an updated version of the 
internal report D4.1.2-M12 from the ITEA2 project MODRIO. 
The rest of this article is new material. 

 Describing failure situations where the model is 
completely changing (e.g. the normal behavior 
of a pump is a 0D model. In case of cavitation, a 
1D model is needed to describe physics, requir-
ing to switch dynamically from a 0D to a 1D 
model when cavitation occurs). 

In general this means that the number of continuous-
time states of the model might change dynamically 
during the simulation. Such models cannot be de-
scribed with current Modelica, version 3.3 (Modelica 
Association, 2012), since in this case the basic re-
quirement is that the number of continuous-time 
states of a model is fixed during a simulation. 

The basic idea for multi-mode modeling is to ex-
tend the Modelica 3.3 synchronous state machines 
(Elmqvist et. al., 2012) to continuous-time state ma-
chines having continuous-time models as “states”. 
Every model can be a “state” of a state machine, in-
cluding acausal models, such as a capacitor, or a ro-
tational inertia. The number of continuous-time state 
variables can change at a transition of a state ma-
chine. No new Modelica language element is needed, 
but a generalized semantics for state machines has to 
be introduced, such as “merge semantics for differ-
ential equations“. The concepts have been evaluated 
with a Dymola prototype (Dassault Systèmes, 2014). 

A related paper (Bouissou et. al., 2014) discusses 
the use of continuous-time state machines in Modeli-
ca for the modeling of stochastic hybrid systems by 
means of Piecewise Deterministic Markov Processes 
(PDMP). It focuses on how to handle the case when 
the transitions on continuous-time state machines 
depend on stochastic transitions. 

Modeling state machines with differential equa-
tions in the states is a well-known approach in au-
tomata theory, called hybrid automata, see e.g. (Hen-
zinger 1996). Such an approach is only of limited use 
when modeling physical systems, even if the Ordi-
nary Differential Equations (ODEs) on a state are 
extended to Differential-Algebraic Equations 
(DAEs): The user has to enumerate all different con-
figurations of a system and has to provide the equa-
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tions for every configuration and also provide all the 
details to switch between these configurations, see 
also next section. 

MOSILAB (Bastian et. al., 2010) from Fraunho-
fer is an extension to Modelica by introducing con-
tinuous-time statecharts in Modelica and supporting 
DAEs on the states. This approach has similar draw-
backs as hybrid automata, but is more powerful as 
hybrid automata due to the usage of Modelica. 

Sol (Zimmer, 2010) is an experimental language 
to model variable structure systems with index 
changes. The large flexibility requires an interpreter 
for the simulation: Whenever the DAE index of a 
system is changed during simulation, the relevant 
equations of the model are newly symbolically pro-
cessed and especially also newly index-reduced. The 
advantage is that a very large class of physical sys-
tems with variable structure can be described. The 
drawback is that an interpreter is needed at run-time, 
considerably reducing the simulation efficiency. 

The approach presented in this paper introduces 
certain restrictions on what kind of changes can be 
made to the model at a mode change. This allows 
symbolic transformations still to be handled during 
translation, so the generated code is efficient and 
there is no run-time interpreter.  

2 Continuous-time state machines 
with causal blocks 

2.1 Synchronous state machines 

In Modelica 3.3 (Modelica Association, 2012) syn-
chronous state machines are defined. These state ma-
chines are only executed as sampled data systems. 
From the specification:  

Any Modelica block instance without continuous-
time equations or algorithms can potentially be a 
state of a state machine. A cluster of instances which 
are coupled by transition statements makes a state 
machine. All parts of a state machine must have the 
same clock. All transitions leaving one state must 
have different priorities. One and only one instance 
in each state machine must be marked as initial by 
appearing in an initialState statement. 

2.2 Continuous-time state machines 

In order to define multi-mode systems, the basic idea 
is to generalize the clocked state-machines from 
Modelica 3.3 to continuous-time. In a first step, two 
cases are distinguished: 

1. All states and transitions of one state machine 
are clocked and belong to the same clock 
(= semantics in Modelica 3.3). 

2. All states and transitions of one state machine 
are continuous-time (= new, additional seman-
tics; discussed below). 

In this section we only consider “causal” continuous-
time systems, that is, the “states” must be “blocks” 
with defined “input” and “output” variables. As a 
result, every “state” block can be separately symbol-
ically processed (such as BLT partitioning) assuming 
that all its inputs, pre(..) and arguments of 
der(..) are known and all other variables, especial-
ly outputs, der(..), and arguments of pre(..) are 
unknown. Therefore, from a conceptual point of 
view a “state” is a set of ordinary differential equa-
tions (ODE) with known inputs ܝ and states ܠ and of 
explicit algebraic equations with unknown outputs ܡ 
computed in the block: ܠሶ = ,ܠ)܎ ,ܝ ܡ (ݐ = ,ܠ)܏ ,ܝ  (ݐ

The outgoing transitions of the active state of a state 
machine are Boolean conditions that are continuous-
ly monitored and are transformed to event indicator 
signals (also called zero-crossing functions) that sig-
nal an event when the Boolean condition changes its 
value. At this time instant the numerical integration 
is stopped, the state machine switches to the new 
“state” and the ODE of this new state is either re-
started or continues from the previous value of its 
continuous-time state variables when the “state” was 
active the last time.  

As a simple example consider the continuous-
time state machine in Figure 1 with two “states”. 
This state machine consists of “states” that consist of 
completely unrelated blocks (in the upper “state” it is 
a drive train with clutches, and in the lower “state” it 
is a controlled electrical motor with load). At the 
start of the simulation the upper state is active and 
the drive train is simulated. At time = 1.5 s, the 
simulation of the drive train is stopped and the con-
trolled electrical motor block starts simulating. 

As can be seen, the number of continuous-time 
states changes dynamically during simulation and the 
state machine switches between unrelated models. 
There is the restriction that every “state” block needs 
to have a full initialization definition (e.g., starting 
from given start values of the continuous-time states, 
or starting from a steady-state condition which re-
quires to solve a nonlinear algebraic equation system 
when the block becomes active the first time). When 
a “state” block is activated the first time, the initiali-
zation equations are first evaluated before the simu-
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lation of the block is started. When a “state” block is 
re-entered, the block is re-initialized if the reset flag 
is set in the transition. Otherwise, the block contin-
ues from the values of the continuous-time variables 
state of the previous activation. 

 
Figure 1: Continuous-time state machine 

2.3 Hybrid automata 

The system in Figure 1 is practically not very useful, 
since signal values are not exchanged between the 
different “state” blocks. More useful state machines 
are the already mentioned hybrid automata, see for 
example (Henzinger 1996). A simple example is 
shown in Figure 2 and Figure 3: 

 
Figure 2: Hybrid automata with “a” as input signal. 

On every “state” an ODE is present. The transition 
conditions consist of trigger conditions when to 
switch the state (e.g. “[ݔ ≥ 3]”). Furthermore, at the 
transition it is defined in which way to reset the state 
of the ODE (e.g. “/x:=1” means that continuous-
time state x is reset to 1, before entering the target 
“state”). In the Dymola prototype, this state  

 
Figure 3: Solution of the hybrid automata from 

Figure 1 with a = time > 2.5”. 

 
Figure 4: Hybrid automata from Figure 1 modeled 

in Modelica with indirect reset. 

machine can be modeled with the proposed Modelica 
extension according to Figure 4. Here, every “state” 
is a block that contains the differential equation. 
Note, the same continuous-time state variable “x” is 
used in all “states” (called “mode1”, “mode2”, 
“mode3” here), because this variable is defined with 
“outer output” in the mode blocks. Additionally, 
the start value xstart of the state is reported via 
inner/outer to all mode blocks. The expected se-
mantics is that whenever entering a “state” and the 
reset flag in the transition is set, then the differential 
equation is newly initialized with the actual start val-
ue of “x”.  

The current semantics of the prototype implemen-
tation in Dymola is that when an immediate transi-
tion is used, the equations are activated once before 
the reset is made. This explains why xstart is mod-
ified in the destination state. The use of the con-
struct: 
  inner Real xstart(start=1, fixed=true); 
  inner Real x(start=xstart, fixed=true); 
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is not standard Modelica since the variability of the 
start attribute is parametric. To allow any variability 
of the start expression would be one possible exten-
sion to Modelica to solve the re-initialization prob-
lem. However, the solution of using a “global” vari-
able xstart is not elegant and is error prone. It would 
be better to allow such information for re-
initialization to be associated with the transition. Fur-
ther investigations are needed for designing the 
“right” extension.  

Similarly as for clocked synchronous state ma-
chines, also for continuous-time state machines the 
“single assignment rule” holds for every variable. 
This means that variables in the different “states” 
must be merged. The merge-semantics for algebraic 
variables is identical to the merge-semantics of 
clocked synchronous state machines (see section 
17.3.5 of the Modelica 3.3 specification). Variables 
that appear in the derivative operator, der(..), are 
merged in the following, equivalent way: 

der(x) := if activeState(state1) then  
            expr1  
          elseif activeState(state2) then 
            expr2  
          elseif  
             ... 
          else last(der(x)) 

This means that in the example above, the equations 
for der(x) in the different “state” blocks are merged 
into the following single statement: 
der(x) := if     activeState(mode1) then 
             1 
          elseif activeState(mode2) then 
            -x 
          elseif activeState(mode3) then 
            1 + sin(time+0.5) 
          else last(der(x)) 

3 Continuous-time state machines 
with acausal models 

Hybrid automata are of limited use for physical sys-
tem modeling, because the equations have to be first 
manually transformed into an input-output block and 
this is inconvenient and might be non-trivial. Fur-
thermore, the graphical representation in an object 
diagram might be “not nice” due to input and output 
connections in a diagram that uses physical, that is 
acausal, connectors otherwise. Therefore, from a us-
er point of view, it is important to support acausal 
models as “states”. In general this is non-trivial, be-
cause different “states” may require different sym-
bolic handling of the equations in the environment 
since causality and the DAE index might change be-
tween “states” of a state machine. However, a quite 

large class of acausal model “states” have been iden-
tified that can be reasonably handled. 

As an example, consider the electrical circuit with 
two state machines in Figure 6. In the upper part of 
the electrical circuit a diode model is present as a 
“state”. At “time > 0.9” this state is left and state 
“brokenDiode” is activated consisting of a resistor 
with a large resistance. Note, that the “states” have 
“electrical pins” from which they are connected with 
the rest of the circuit. In the lower right part of the 
circuit diagram, another state machine is present. It 
consists of a capacitor “state” (modeled as a resistor 
in series with an ideal capacitor model).  

At time = 0.3s, the hardware configuration is 
changed and the state switches to state “R2” consist-
ing of a small resistance. At time 0.7s, the configu-
ration is switched back. Note, that in this second case 
the number of continuous-time states is changing 
when switching. 

In the rest of this section, the new method is de-
scribed that allows us to handle such systems in an 
efficient way. 

 
Figure 5: Circuit with two acausal state machines. 

 
Figure 6: Simulation result of the circuit of Figure 5. 
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3.1 Basic idea for symbolic processing 

The basic idea to symbolically process continuous-
time state machines with physical connectors is ex-
plained at hand of the simple example in Figure 7. 
This circuits contains a state machine with two 
states, capacitor C (state 1) and resistor R2 (state 2). 
The simulation starts with capacitor C and after 0.5 s 
the state machine is switched to the resistor R2. Con-
ceptually, the same behavior can be achieved with 
the Modelica model shown in Figure 8 where the 
models of the two previous two states are connected 
together with a special switch explained below. 

 
Figure 7: Simple circuit with an acausal state ma-
chine.  

 
Figure 8: Simple circuit from Figure 7 implemented 
with special switches using standard Modelica. 

Via the Integer input state to the switches it can be 
defined whether pin n1 or pin n2 is connected to pin 
p. In the circuit from above, it is defined as: 

  Integer state = if time <= 0.5 then 1  
                                 else 2; 

The effect of the two switch positions is demon-
strated in Figure 9. If in state 1, the capacitor C 

is connected with the rest of the circuit. The resistor 
R2 is connected with small (dummy) conductances to 
ground. This is necessary, because otherwise R2 
would be “floating” and there would be missing 
equations for voltages. The currents into the pins 
would be zero since no environment would be at-
tached. However, it is already stated in the resistor 
that the currents sum to zero. So there would be one 
equation too much for currents. 

If in state 2, the resistor R2 is connected with the 
rest of the circuit. The capacitor C is connected with 
small (dummy) conductances to ground, similarly as 
the resistor in state 1. 

It is clear that both configurations can be simulat-
ed with a standard Modelica simulator and that the 
variables of the “active” state will have identical re-
sults to the “active” state of the circuit in Figure 7. In 
order to achieve this behavior, the special switch 
models of Figure 8 need to be defined as:  

Configuration if state = 1 

 
Configuration if state = 2 

 

Figure 9: The two configurations of the simple cir-
cuit from Figure 8. 
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  // Equation for potential variables 
  p.v = if state==1 then n1.v else n2.v; 
 
  // Equation for flow variables 
  0 = p.i + (if state==1 then n1.i  
                         else n2.i); 
 
  // Equation for not connected state 
  0 = if state==1 then Gsmall*n2.v-n2.i 
                  else Gsmall*n1.v-n1.i; 

There are different variants to formulate the equa-
tions of this switch. The variant above has the ad-
vantage that one equation depends only on potential 
variables, but not on flow variables, and one equa-
tion depends only on flow variables and not on po-
tential variables. This is the same principal structure 
as for every single configuration. For example, as-
sume that in both configurations the potential varia-
ble equations need to be differentiated (due to a con-
straint between states). If in this case the combined 
potential variable equation of the switch is differen-
tiated, then no flow variables are differentiated be-
cause the equation contains only potential variables. 

The basic idea to handle acausal state machines 
can now be sketched: 

(1) Connect statements from the outside of a state 
machine to connectors on the states of a state 
machine are replaced by the equations of the 
special switch statement above. 

(2) All state machine states are removed and the 
equations of all states and all transitions are add-
ed to the rest of the model. The result is a stand-
ard DAE according to current Modelica. 

(3) The standard symbolic transformation algo-
rithms are applied on this resulting DAE, such as 
Pandelides algorithm (Pantelides 1988), BLT, 
dummy derivative method (Mattsson and Söder-
lind 1993). 

(4) When generating code, all equations originally 
belonging to a state are de-activated (are not 
evaluated), when this state is not active. Fur-
thermore, all continuous-time state variables 
from all non-active states are removed from the 
integrator2. 

Note, applying rules (1) and (2) on the example from 
Figure 7 results in the circuit of Figure 8. Due to 
rule (4), the code for the dummy conductors will not 
be executed and therefore the values of the conduct-
ances do not matter. The conductors are only im-
portant during the symbolic transformation phase 

                                                      
2 A simple way to not integrate over deactivated states is to just 
report to the integrator that the derivatives of these states are 
zero, and otherwise keep the dimension of the state vector. 

where structural properties of the equations are uti-
lized. 

Since the symbolic processing might differentiate 
equations and/or might lead to linear or non-linear 
systems of equations, this means, that also equations 
on states might be differentiated or algebraic systems 
of equations over states and non-states might be pre-
sent. 

In the rest of this paper, the above sketch is more 
formally defined, consequences and limitations are 
discussed and several examples are presented. 

3.2 Mapping physical connections to equations 

In this section it is defined how the connect(..) 
statement of Modelica is mapped to equations if one 
of the arguments is a connector on a state of a state 
machine. 

3.2.1 Connections between states of one 
state machine 

Requirement 1: 
It is not allowed to have a connection set where 
all connectors of the set belong to the same state 
machine and at least two connectors are on dif-
ferent states of this state machine. 

Note, the states of a state machine are mutually ex-
clusive. If there are connections between mutually 
exclusive states of a state machine, then the connec-
tion will never have an effect (because always only 
one connector will be active), and there will be miss-
ing equations. 

3.2.2 Connections between single potential-flow 
variable pairs  

Assume a connector ܿ௜ present on a state ݅ is defined 
by one potential variable ݌௜ and one flow variable ௜݂ 
and that ݊ of these connectors from the same state 
machine are connected to connectors outside of this 
state machine.  

A virtual connection node ܿ଴ is (conceptually) in-
troduced outside of the state machine. All connec-
tions from ܿ௜ to connectors outside of the state ma-
chine are replaced by connections to ܿ଴ and connec-
tions from ܿ଴ to the original targets. As a result, the 
following connect statements will be present (the 
connect statements to the targets are handled accord-
ing to current Modelica): 

connect(ܿ଴, ܿଵ) 
connect(ܿ଴, ܿଶ) 

   ... 
connect(ܿ଴, ܿ௡) 
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These connect statements are replaced by the follow-
ing equations, where ݅ characterizes the active state: 

Mapping Equations 1: ࢖ = ,ଵ݌] ,ଶ݌ ⋯ , ࢌ ்[௡݌ = [ ଵ݂, ଶ݂, ⋯ , ௡݂]் ݅ = activeState()  ݌଴ = 0 [݅]࢖ = ଴݂ + ݆ for [݅]ࢌ = 1: ݊ − 1 ݇ = mod(݅ + ݆ − 1, ݊) + 1 0 = ௦௠௔௟௟ܩ ∙ [݇]࢖ −  [݇]ࢌ
Note, the for-loop generates ݊ − 1 dummy equations 
describing a linear relationship between the potential 
and flow variables of the connectors on the states 
that are not active. Due to this mapping, the connect 
equations have the following structural dependency: 0 = ݃ଵ(݌଴, ,࢖ ݅) 0 = ݃ଶ( ଴݂, ,ࢌ ݅) 0 = ,࢖)ଷ:௡ାଵࢍ ,ࢌ ݅) 

These are ݊ + 1 equations for ݊ + 1 connectors, 
where 

 one equation depends on all potential variables 
of the connection set and on the active state, 

 one equations depends on all flow variables of 
the connection set and on the active state, 

 ݊ − 1 equations depend on all potential and all 
flow variables of the connectors that are on the 
state machine and on the active state. 

The equations ࢍଷ:௡ାଵ are in principal only relevant 
for the symbolic analysis. During simulation, these  
equations are never evaluated, because they are deac-
tivated for the active state.  

If these equations appear in an algebraic loop, a 
simple implementation might just compute the solu-
tion without taking into account that the equations 
are deactivated and then ignore the computed value 
for the deactivated variables. In this case the value of ܩ௦௠௔௟௟ matters because the value is used during the 
solution of the equation system, and if the value be-
comes too small, the Jacobian of the equation system 
may become badly conditioned. In this case ܩ௦௠௔௟௟ 
should be in the order of the other elements of the 
equation Jacobian (or if this information is not 
known, ܩ௦௠௔௟௟ = 1 might be used). 

An efficient implementation requires to rewrite 
algebraic equation systems when a new state be-
comes active. For example, assume a linear system 
of equations is present during simulation and for 
state ݅ = 1 it has the form: 

቎࡭ଵଵ ଵଶ࡭ ଵଷ૙்࡭ ௦௠௔௟௟ܩ ଷଵ࡭1− ଷଶ࡭ ଷଷ࡭
ଷସ቏࡭ଵସ૙்࡭ ∙ ൦ࢠଵ݌ଶ݂ଶࢠଷ൪ = ቈ⋯⋯⋯቉ 

Since the variables and equations of state ݅ = 2, es-
pecially ݌ଶ, ଶ݂, are deactivated (and the variables 
hold their values) if this state is not active, this linear 
system of equation can be simplified for state ݅ = 1 
to: ൤࡭ଵଵ ଷଵ࡭ଵସ࡭ ଷସ൨࡭ ∙ ቂࢠଵࢠଷቃ = ቂ⋯⋯ቃ 

With this type of equation handling, ࢍଷ:௡ାଵ are nev-
er evaluated during simulation and the value for ܩ௦௠௔௟௟ does not matter. 
Note, when implementing a generic switch for ݊ 
connectors, the “Mapping Equations 1” can be com-
pactly defined in Modelica: 

  input Integer state; 
  parameter Integer nStates; 
  Pin p, n[nStates] 
equation 
  p.v = n[state].v; 
    0 = p.i + n[state].i; 
  zeros(nStates-1) = {Gsmall* 
     n[mod(state+i-1, nStates)+1].v - 
     n[mod(state+i-1, nStates)+1].i 
     for i in 1:nStates-1}; 

3.2.3 Connections between 
input-output connectors 

Assume state ݅ of a state machine is an input-output 
block with an input ݑ௜ and an output ݕ௜ and that ݊ of 
these connectors from the same state machine are 
connected to connectors outside of this state machine 
– from a node ݑ଴ to the inputs ݑ௜ and from the out-
puts ݕ௜ to a node ݕ଴. This means that the following 
connect statements are present: 

connect(ݑ଴,  (ଵݑ
connect(ݑ଴,  (ଶݑ
   ... 
connect(ݑ଴,  (௡ݑ

connect(ݕଵ,  (଴ݕ
connect(ݕଶ,  (଴ݕ
   ... 
connect(ݕ௡,  (଴ݕ

These connect statements are replaced by the follow-
ing equations, where ݅ characterizes the active state: 

Mapping Equations 2: ࢛ = ,ଵݑ] ,ଶݑ ⋯ , ࢟ ்[௡ݑ = ,ଵݕ] ,ଶݕ ⋯ , ࢛  ்[௡ݕ = ଴ݑ ∙ ones(݊)ݕ଴ =  [()activeState]࢟
These are ݊ + 1 equations for ݊ + 1 connections. 
When a state ݆ is not active, an arbitrary value can be 
provided for its input ݑ௝. For simplicity, just the 
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overall input ݑ଴ is provided, so ݑ௝ = -଴. Again, beݑ
cause equations on not active states are deactivated 
during simulation, these equations are only present 
during the symbolic transformation, but not during 
run-time. Therefore, the actually provided value for 
the input does not matter. Additionally, to the map-
ping rules above, the standard input-output semantic 
restrictions (e.g. an output can be only connected to 
one input), must be relaxed, so that this rule holds 
only for the active state, but not for deactivated 
states. 

In Figure 10 an example with two input-output 
blocks is given: The simulation starts with block 
firstOrder, a first order block. When time > 0.5, 
the state machine switches to block secondOrder. 
Entering seondOrder re-initializes the block to the 
output of state firstOrder (more details on re-
initialization are given in section 3.3). 

 
Figure 10: State machine switching between two in-
put-output blocks.  

Simulation results are shown in Figure 11. Here a 
first order behavior is seen for the first 0.5 s. After-
wards a second order behavior occurs.  

 
Figure 11: Simulation results of the state machine of 
Figure 10. 

3.2.4 Equation rewriting to enhance efficiency 

The approach from section 3.2.2 might lead to alge-
braic equation systems where the size of the systems 
is unnecessarily large. In some cases these sizes 
might be reduced with the following rewriting rules 
for connect equations: 

First, run the Pantelides algorithm (Pantelides 1988) 
and perform the BLT (Block Lower Triangular) 
transformation on the differentiated problem. 

Second, if the following equations of one connection 
set (see “Mapping Equations 1”),  ݌଴ = 0 [݅]࢖ = ௦௠௔௟௟ܩ ∙ [݇]࢖ −  [݇]ࢌ
or their differentiated form, appear in an algebraic 
equation system having all potential variables ࢖[݇] 
as unknowns, but not the flow variables 3[݇]ࢌ, then 
the equations above can be reformulated to: for ݅ = 1: [݅]࢖     ݊ =  ([݅]࢖)ܜܛ܉ܔ ܍ܛܔ܍ ଴݌ ܖ܍ܐܜ (݅)activeState ܎ܑ

where ([݅]࢖)ܜܛ܉ܔ is the value of ࢖[݅] when state ݅ 
was active the last time (so it is a known value).  

The proof for this rewriting is given for ݊ = 2. For ݊ > 2, similar arguments can be given. So, assume ݊ = 2. Then, the equations from the connect-
statements have the following form for the different 
states, according to “Mapping Equations 1”: if  activeState(1) then      ݌଴ = ଵ 0݌ = ଴݂ +  ଵ݂ 0 = ௦௠௔௟௟ܩ ∙ ଶ݌ − ଶ݂ else      ݌଴ = ଶ 0݌ = ଴݂ +  ଶ݂ 0 = ௦௠௔௟௟ܩ ∙ ଵ݌ − ଵ݂ end if 
Since it is assumed that the flow variables ଵ݂ and ଶ݂ 
are known (are computed somewhere else), the 
dummy conduction equations can be solved for the 
potential variables (e.g. ݌ଶ: = ଶ݂/ܩ௦௠௔௟௟). This 
means that for the non-active states, the potential 
variables are known. Instead of computing them by a 
dummy conduction equation, alternatively another 
known value can be used (because all equations of 
non-active states are anyway de-activated) and espe-
cially ([݅]࢖)ܜܛ܉ܔ. As a result, the equations above are 
equivalent to: 

                                                      
3 The flow variables do not appear in the algebraic loop if all are 
continuous-time states or are computed from continuous-time 
states. 
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if  activeState(1) then      ݌଴ = ଵ 0݌ = ଴݂ +  ଵ݂ ݌ଶ = ଴݌      else (૛݌)ܜܛ܉ܔ = ଶ 0݌ = ଴݂ +  ଶ݂ ݌ଵ =  end if (ଵ݌)ܜܛ܉ܔ
This equation set is in turn equivalent to: ݌ଵ =  if  activeState(1) then ݌଴ ܜܛ܉ܔ ܍ܛܔ܍(݌ଵ) ݌ଶ =  if  activeState(2) then ݌଴ ܜܛ܉ܔ ܍ܛܔ܍(݌ଶ) 0 = ଴݂+ if  activeState(1) then ଵ݂܍ܛܔ܍ ଶ݂ 

and the proof is complete. 

After re-writing the equations, all symbolic algo-
rithms are re-run. Usually, the equation systems will 
become smaller, since the equations depend now 
only on two variables, and not on many variables. 
Intuitively this rewriting means that  ݌଴  is computed 
outside of the state machine and propagated to the 
states of the state machine. Therefore, the previous 
algebraic loop over all the states is broken. A prereq-
uisite for this rewriting is that for all non-active 
states it is sufficient to treat the potential variables as 
inputs. A sufficient condition for this to be possible 
is that the flow variables have been already comput-
ed somewhere else. 

In a similar way, the equations can be rewritten, if 
the flow variable equation and the dummy conductor 
equations are in an algebraic loop. 

3.3 Re-Initialization 

When changing from one state to another one, the 
DAE of the target state must usually be initialized. 
This is basically performed with the methods from 
section 2.3 as demonstrated at hand of the example 
in Figure 12. This example models a drive train, 
where a rotational inertia breaks during the opera-
tion. In particular, this models consists of  

 a state1 with inertia1 and J=10, 

 a state2 with inertia2a (J=9) and inertia2b 
(J=1) that are not connected, 

 an inertia3 outside of the state machine that is 
connected to inertia1 and inertia2a and is 
driven by a step torque4, and 

 a spring-damper that is connected to inertia1 
and inertia2b. 

At time = 0.5, the state machine switches from 
state1 to state2 and therefore inertia1 is re-
placed by two unconnected inertias that have togeth-
er the same moment of inertia as inertia1. In other 
words, the “breaking” of inertia1 is modelled. 
Note, that the number of continuous-time states is 
changing (there are 2 continuous-time state when in 
state1 and 4 when in state2). 

With the generation of connect equations in sec-
tion 3.2 and the sketched symbolic processing of the 
overall DAE, this system gives rise to index reduc-
tion between inertia3, inertia1 and inertia2a 

                                                      
4 inertia3 is only present to demonstrate index reduction and 
algebraic loops over a state machine 

Figure 12: Breaking inertia that requires index reduction and algebraic loop handling over a 
state machine, as well as re-initialization when entering state2.
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and due to this index reduction an algebraic loop be-
tween equations of these components are present. 
The Dymola prototype handles this correctly. 

When switching from state1 to state2, iner-
tia1 has some angle and angular velocity and the 
inertias on state2 need to be appropriately initial-
ized. Since inertia2a is rigidly attached to iner-
tia3, no initialization of inertia2a is needed. 
However, the continuous-time states of inertia2b 
need to be initialized to the states of inertia3. This 
is performed in the following way: 

  inner Real phi(start=0, fixed=true) = 
                           inertia3.phi; 
  inner Real w(start=0,fixed=true) = 
                           inertia3.w; 
  ... 
  // in state2 
  import R=Modelica.Mechanics.Rotational; 
  outer Real phi; 
  outer Real w; 
  R.Components.Inertia inertia2b(J=1, 
            phi(start=phi, fixed=true), 
              w(start=w  , fixed=true)); 

On the top level the inner variables phi and w are 
associated with the corresponding variables of iner-
tia3. In state2 these variables are declared as 
outer and used as start values for inertia2b. 
The semantics is that when state2 is entered, then 
the variables of state2 are re-initialized to their 
start values. A result plot of the angular velocities of 
the inertias on the two states is shown in Figure 13. 

 
Figure 13: Simulation result for the breaking inertia 
of Figure 12. 

As can be seen, the amplitude and frequency of in-
ertia2b increases with respect to inertia1, be-
cause its moment of inertia is much smaller. 

3.4 Limitations 

The question arises which types of models cannot be 
handled with the proposed approach? First, inde-
pendently of the symbolic algorithms used, the map-

ping of connect statements to equations as defined in 
section 3.2 is always correct. It is clear that there 
must be limitations when applying the standard sym-
bolic algorithms on the resulting set of equations, 
because the structure of the equations depends on the 
active state and this dependency is not taken into 
account by the standard algorithms. For example 
assume that the following equation is present 

  p.v = if state==1 then n1.v else n2.v 

when mapping some connect statements to equa-
tions. Assume that p.v and n1.v are states, but n2.v 
is not. Then this state constraint is not detected and 
n2.v is always computed from p.v and from n1. Of 
course, this will fail (will give a division by zero) in 
state 1. The correct handling would be that in state 1 
the equation p.v = n1.v is present and if both vari-
ables are states, this equation must be differentiated. 
However, the standard algorithms do not take this 
into account and it seems also non-trivial to general-
ize. 

In Figure 14 there is a state machine with a ca-
pacitor C1 and a resistor R2 . These two states are 
connected in parallel to a capacitor C2. This model 
cannot be handled with the proposed method (and 
will give a run-time error that a matrix is singular), 
because in the capacitor state there is a state variable 
constraint between C1 and C2 and in the resistor state 
there is no such state constraint. 

 
Figure 14: Parallel capacitors that cannot be han-
dled due to different state constraints in the different 
states. 

In Figure 15 there is a state machine with a connec-
tion of two flanges in state1 and no connection in 
state2 (this is defined by connecting zero-torques 
to the two flanges). This state machine is placed be-
tween two inertias. The model describes a breaking 
inertia in a more natural formulation as in Figure 12. 
This model cannot be handled with the proposed 
method (and will give a run-time error that a matrix 
is singular), because in state1 there is a state con-
straint between inertia1 and inertia2 and in 
state2 there is no such state constraint. 
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Figure 15: Breaking inertia that cannot be handled 
due to different state constraints in the different 
states. 

It is not nice that such models lead to an error only 
when simulating the model. It is also difficult to de-
duce the source of the problem from an error mes-
sage stating that a matrix is singular. In principal, the 
diagnostics can be improved, so that such errors oc-
cur during translation with an understandable error 
message:  

The sorted equations are inspected and every al-
gebraic equation system that depends on a state of a 
state machine is processed again: The equations of 
an algebraic equation system are partitioned (so the 
assignment algorithm is applied) for every state ma-
chine state taking into account the equation structure 
of the particular state only. If one of the assignments 
fails, the equation system is structurally singular for 
the selected state and therefore the model cannot be 
handled. 

4 Conclusions  
A proposal is presented for modeling variable struc-
ture systems with dynamically changing number of 
states in Modelica by extending the synchronous 
clocked state machines to continuous-time state ma-
chines. With this extension it is straightforward to 
model hybrid automata. However, hybrid automata 
are not practical to use for physical system modeling. 
A novel extension is proposed to use acausal models 
as states of a state machine. By mapping connections 
to connectors on a state machine in a particular way 
on equations, the standard symbolic processing for 
Modelica models can be applied. This approach al-
lows already handling a large class of useful variable 
structure systems with dynamically changing sizes of 
continuous-time states. 

Models cannot be handled with this new method, 
if connections between state and non-state compo-
nents lead to constraints on continuous-time state 

variables that vary for the different state machine 
states. 

The proposal is not yet complete. Especially, 
mappings for all connector types of Modelica need to 
be still defined, especially for multi-body and for 
fluid systems. Additionally, the switching between 
DAEs may lead to Dirac impulses, if not properly re-
initialized (or it must be modelled in a way that im-
pulses occur, due to the underlying approximation of 
the reality). Furthermore, algebraic equation systems 
over states need to be analyzed in more detail, espe-
cially in combination with the dummy derivative 
method. It is planned to work on these topics in the 
near future. 
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