
Integrated Debugging of Equation-Based Models
Martin Sjölund1, Francesco Casella2, Adrian Pop1, Adeel Asghar1, Peter Fritzson1,

Willi Braun3, Lennart Ochel3, Bernhard Bachmann3
1Programming Environments Laboratory

Department of Computer and Information Science
Linköping University, Linköping, Sweden

2Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milano, Italy
3 Dept. Mathematics and Engineering, University of Applied Sciences,

D-33609 Bielefeld, Germany
{adrian.pop,martin.sjolund,adeel.asghar,peter.fritzson}@liu.se

francesco.casella@elet.polimi.it, {bernhard.bachmann,lennart.ochel,willi.braun}@fh-bielefeld.de

Abstract
The high abstraction level of equation-based object-
oriented languages (EOO) such as Modelica has the
drawback that programming and modeling errors are
often hard to find. In this paper we present the first in-
tegrated debugger for equation-based languages like
Modelica, which can combine static and dynamic
methods for run-time debugging of equation-based
Modelica models during simulations. This builds on
and extends previous results from a transformational
static equation debugger and a dynamic debugger for
the algorithmic subset of Modelica.

Keywords: Modelica, Debugging, Modeling and

Simulation, Transformations, Equations, Algorithmic
Code, Runtime Errors, Tracing, Solver Failures

1 Introduction
The advanced development of today’s complex prod-
ucts requires integrated environments and equation-
based object-oriented declarative (EOO) languages
such as Modelica [10][14] for modeling and simulation.

The increased ease of use, the high abstraction, and
the expressivity of such languages are very attractive
properties. However, the downside of this high-level
approach is that understanding the root causes of unex-
pected behavior and numerical errors of simulation
model is very difficult, in particular for users who are
not experts in simulation methods.

The main reason of this difficulty the fact that lots
of sophisticated symbolic and numerical transfor-
mations are applied to the original model in order to
eventually obtain the executable simulation code, in
which errors and problems do occur. An effective de-
bugging environment should then guide the end user

back and forth through the numerical results and all the
performed symbolic transformations of the model, in
order to quickly find and correct the causes of errors.
This paper presents the integrated debugger of the
OpenModelica tool suite, including a graphical user
interface integrated with the OpenModelica Connection
Editor (OMEdit) GUI. This builds on and extends pre-
vious results from a transformational static equation
debugger [6][7] and a dynamic debugger [1][3][4] for
the algorithmic subset of Modelica.

Despite the fact that debugging environments have
been the subject of extensive research and implementa-
tion work in the field of computer science, to the best
of the authors’ knowledge this is the first documented
operational debugging environment for equation-based
modeling languages supporting dynamic debugging of
equation-based mathematical models as well as algo-
rithmic code in an integrated way.

The rest of the paper is structured as follows: The
debugging procedure is outlined in Section 2 and the
GUI in Section 3. The tracing of equation transfor-
mation is discussed in Section 4, while Section 5 dis-
cusses the issues of interfacing with the run-time simu-
lation executable. In Section 6, some example models
are shown, illustrating how the debugger can help their
troubleshooting. Section 7 discusses background and
related work, Section 8 states the current implementa-
tion status at the time of this writing, and Section 9
concludes the paper.

2 Overall Debugging Procedure
The debugger should support three basic scenarios:

• The simulation stops at a certain time step, or during
initialization, because of a numerical runtime error;

DOI
10.3384/ECP14096195

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

195

• A complete simulation run has been performed suc-
cessfully, but some variables exhibit suspicious or
clearly wrong values;

• A breakpoint is inserted to stop the integration ei-
ther at a certain given value of the time variable, or
when some user-supplied condition is triggered. In
this case, it should be possible to restart the simula-
tion (and possibly to set a new breakpoint)

The different functionalities of the debugger are speci-
fied in more detail in the following sub-sections.

2.1 Types of Debugging Activities

We divide the problem of debugging the execution
(i.e., the numerical simulation) of an equation-based
model into three different areas:

• Initialization. Before starting the simulation, con-
sistent initial conditions are computed by solving a
set of initial equations. In the following, it is as-
sumed that this is done by using multiple optimiza-
tion strategies, such as alias variable elimination,
BLT partitioning, tearing, etc.

• Causalization. It is also assumed that the solution of
the differential-algebraic equations over time is ob-
tained by a two-stage strategy. In the casualization
stage, the DAEs are solved for the derivatives by us-
ing multiple optimization strategies, such as sym-
bolic index reduction as well as the ones previously
mentioned.

• Time integration. The computed derivatives (and
possibly their Jacobian matrix) are then passed to
ODE solvers, such as DASSL, Runge-Kutta, Radau,
etc., that advance the solution of the system over
time

2.2 Debugging Initialization and Causalization
Problems

For the purpose of debugging, initialization and
causalization share a common structure despite using
different numerical solvers. They can be represented
using a similar GUI. The only difference is that the set
of equations and unknowns for initialization is larger
than for causalization, as it also includes the state vari-
ables and the parameters, as well as the initial equations
and parameter-binding equations. Also, the simulation
code to solve both problems is usually generated by the
Modelica tool itself, so it is fairly straightforward for
the tool developers to add all kind of instrumentation to
it for debugging purposes.

Variables are matched to the equations that are used
to solve them. If an error has occurred while trying to
compute a certain variable or a certain set of variables

for strong components in the BLT, the error (e.g., divi-
sion by zero, logarithm of a negative number, singular
linear system of equations, etc.) is reported in the con-
text of the equation as it has been transformed in order
to solve it efficiently at run time. Then, it is possible to
backtrack step-by-step each stage of the transfor-
mations of each equation, up to the original equations
in the source code.

This activity can also be carried out in the absence
of errors, either when a breakpoint is triggered, or when
the values at a specific time step are inspected after the
simulation run has been performed. Assuming that
some variable(s) have suspicious, or maybe clearly
wrong values, one starts analyzing the equations that
were used to compute them, going backwards in the
causality chain determined in the BLT, and trying to
locate the model error that caused the computation of
the wrong values.

The solution of the equation(s) also depends on the
values taken by all the other known variables showing
up in the equations, either states or other unknown var-
iables previously computed in the BLT. The debugger
allows to inspect the values taken by these variables, as
well as the equation(s) in which they were solved for.
Then, the same activities will be possible recursively
on this new set of equations: understanding where they
come from in the equation transformation chain, as
well as inspecting the values of the variable(s) they
depend upon.

2.3 Debugging Time Integration Problems

The requirements for the debugging of time integration
problems are quite different. Unrecoverable errors gen-
erated by the ODE solver should be reported to the de-
bugger using some kind of unified representation (e.g.,
using XML), which is as independent as possible from
the specific solver used. Of course, some errors will
only make sense for a subset of solvers; for example,
singular Jacobians are only relevant in the case of im-
plicit solvers; event chattering is only relevant for solv-
er with state event detection.

The first kind of error that can arise in solvers with
state event detection based on zero crossing function is
chattering: if a large number of events takes place in a
very short time interval, then the debugger reports the
corresponding zero-crossing functions and allows to
back-track them to their original formulation in the
source code, as well to inspecting the values of all the
variables involved in them in the last accepted time
steps.

It may also be the case that chattering arises without
any event being generated, if the noEvent() operator
is incorrectly placed around a discontinuous expression

Integrated Debugging of Equation-Based Models

196 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096195

inside a model equation, or if some functions in the
model generate results which are discontinuous w.r.t.
their inputs (recall that Modelica functions do not gen-
erate events). This situation can be detected by moni-
toring the step size, and detecting the fact that the step
size has been reduced to very small values for a very
large number of step sizes.

In order to identify the root cause of the problem, it
is necessary that the ODE solver can report which
component(s) of the state vectors have the largest esti-
mated errors, and are thus mainly responsible for the
excessive step size reduction. The debugger will then
point the end user to the equations that are used to
compute the corresponding derivatives, using the same
mechanism adopted for the initialization and casualiza-
tion steps. Wildly oscillating values of the derivatives
will be observed across the last time steps, and it will
then be possible to analyze the expressions leading to
these oscillations, eventually locating the root cause of
the problem.

Another possible error can arise at the ODE solver
level if the underlying differential equations have a
finite escape time, i.e., one or more elements of the
state vector go to infinity as time approaches a certain
finite value. The main symptom in this case is very
similar to the previous case, i.e., the step size is greatly
reduced and the simulation seems stuck at a certain
point in time.

The root cause can also be identified in this case if
the solver reports the component(s) of the state record
that mostly contribute to the error estimate, so that the
debugger can allow the user to inspect the equation(s)
that compute the corresponding derivatives. The values
of these derivatives will constantly grow from one step
to the next one, rather than oscillating wildly as in the
previous case. Again, by careful inspection and analy-
sis, it might be possible to understand the root cause of
the problem and fix it.

2.4 Debugging Homotopy-based Initialization
Problems

If the homotopy() operator is used for initialization,
two extra stages are added to the debugging of the ini-
tialization problem. First, the set of initial equations
using the simplified expression is presented. The BLT
structure of this problem might be substantially differ-
ent (and hopefully simpler) than that of the actual ini-
tialization problem, but the way it is presented in the
GUI to the user for analysis is the same as for the actual
initialization problem.

 The second stage is the homotopy transformation.
From a GUI perspective, this is very similar to the sim-
ulation phase as there are several steps involved. Each
might be accepted, rejected, or eventually fail if the
errors cannot be recovered by taking shorter steps. Al-
so, similarly to the simulation phase, errors might be
reported that arise while solving the equations in the
BLT sequence (as in the initialization and causalization
problems), but also some system-level errors might be
reported by the homotopy solver itself, e.g., in case of
homotopy path bifurcations, similarly to problems re-
ported by the ODE solver during time integration.

The GUI is therefore similar to the one used for de-
bugging errors during simulation, with the following
differences:

• The set of unknowns includes states and parameters;
• the set of equations include initial equations and pa-

rameter-binding equations
• All occurrences of the homotopy operator [14] in

the equations are transformed into λ*actual_expr +
(1 − λ)*simplified_expr;

• The independent variable which is stepped is not
time but rather the λ homotopy parameter.

3 Debugger Graphical User Interface
In order to visualize the transformations performed and
the operations taken by the solver to solve for a varia-
ble and its corresponding equation(s), a transfor-
mations browser (Figure 1; Figure 2; Figure 3) has
been created.

The transformations browser lists the variables
along with their respective types hierarchy, operations
performed, equations which defines the variable and
equations which are using the variable. The types can
be used to navigate to the specific class.

Double clicking on the equation updates the trans-
formation browser and shows the list of operations and
variables involved in the solution of the equation. See
Figure 3.

The transformation browser provides two views:

• Variables view
• Equation View

The data needed to build the structures shown in the
GUI, i.e., the structural information about the equation
systems, and the equation transformation traces, are
loaded from an XML file which is generated by the
OpenModelica compiler, see Section 4 for more details.

Session 1E: Modelica Language & Compiler Implementation

DOI
10.3384/ECP14096195

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

197

Figure 2. Enlarged left part of variable info in
transformations browser variable view with columns:
Variables, Variable Types, Variable
Operators.

When a numerical error is reported, clicking on the
“Debug more” link at the end of the error report brings
up the debugger showing the equation(s) involved in
the error.

Figure 3. Enlarged part of transformation browser
equation view with Defines variable, Depends on
variable, Equation Operators operations like solved,
simplify, substitute, etc.

4 Transformation Tracing
The underlying implementation of the transformation
tracing mechanism is described in more detail in [7].
Some further improvements are present in this version.

The key idea introduced in [7] is to encode and store
in a list all transformations that are performed by the
Modelica compiler on the model equations, such as
symbolic solution, alias elimination, symbolic differen-

Figure 1. Transformations browser variables view with columns: Variables, Variable Types, Variable
Operators.

Integrated Debugging of Equation-Based Models

198 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096195

tiation, etc. Because every operation is stored, it is pos-
sible to replay the operations and verify that the tool
only performed sane operations during translation. This
list of operations is then output to an XML-file (Figure
4) which is parsed by the debugger.

Figure 4. List of equation transformations in the model
Modelica.Electrical.Analog.Examples.NandGate.

The XML-file contains all the variables and equations
used to solve the model, as well as variables that have
already been solved for, alias relations, and so on. The
equations are split into several groups, such as start-
value equations, initial equations, regular equations,
since the same variable may have different equations
defined for it in different phases of the program.

These groups are related to how the compiler decid-
ed to numerically solve simulations. For example, the
file includes the equations generated for the Jacobian,
which is not used by all numerical ODE/DAE solvers.

Each equation knows the variables it solves for, as
well as the variables it uses. This enables fast lookup of
parents, children, and siblings in the BLT matrix. When
reading the file, information is propagated to variables
in a way such that each variable also knows the equa-
tion(s) where it is defined. This is again to ensure that
the debugger can perform cheap lookup operations.

In the case of strongly connected components, an
equation index will point to a set of equations (linear
and nonlinear systems of equations in OpenModelica

are defined as a set of equations and variables to solve
for). The generated code knows the index of an equa-
tion in the XML-file, so in case error or diagnostic
messages are generated, a link to the equations and var-
iables associated with this index can be provided to the
debugger.

The message routines have been updated to take a
list of equation indexes as an option, as well as output
the messages as structured XML. This enables the de-
bugger to read the messages and insert links to equa-
tions as appropriate.

This approach allows a user to debug simulations
even if he/she did not run the simulation through the
debugger, because it is possible to perform post-
mortem debugging only based on the messages and
diagnostics produced by the simulation executable.

There is no additional overhead during regular exe-
cution except reading and writing the additional infor-
mation in the XML-file. This can be done by a thread
running in the background and takes only a few se-
conds even for the large EngineV6 model which both
has many equations and many symbolic operations per-
formed on each equation.

For error-messages there is an additional overhead
of creating an error message that contains all the rele-
vant information. This is a small one-time cost for er-
ror, which are hopefully infrequent. Consequently, the
detailed error messages are output even if the user had
not decided to debug the simulation before he started it
since it will help him figure out why things went
wrong.

5 Run-Time and Event Related Im-
plementation

The run-time system performs the actual simulation of
a Modelica model, in which the solution process is
done by different solvers that cooperate in a master-
slave hierarchical configuration, with the ultimate mas-
ter being the end-user:

• ODE solver
• Functions computing the derivatives and algebraic

variables
• Function computing the initial states and the values

of parameters
• Function computing event points
• Linear equation solvers
• Nonlinear equation solvers

All of them may fail with different kinds of errors de-
pending on the solver, generally because of numerical
issues (e.g. singular Jacobian, no convergence, too tight

<simplify>

 <before>

 Nand.TP1.G.i + Nand.TN1.G.i + (-Nand.x2.i)

 = 0.0

 </before>

 <after>

 Nand.TP1.G.i + Nand.TN1.G.i - Nand.x2.i

 = 0.0

 </after>

</simplify>

<substitution>

 <before>

 Nand.TP1.G.i + Nand.TN1.G.i - Nand.x2.i

 </before>

 <!-- list of intermediate results -->

 <exp>0.0 + 0.0 - (-VIN2.i)</exp>

</substitution>

<simplify>

 <before>0.0 + 0.0 - (-VIN2.i) = 0.0</before>

 <after>VIN2.i = 0.0</after>

</simplify>

<solved>

 <lhs>VIN2.i</lhs>

 <rhs>0.0</rhs>

</solved>

Session 1E: Modelica Language & Compiler Implementation

DOI
10.3384/ECP14096195

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

199

tolerance). However, at the bottom level they all share
particular error types:

• Evaluation of expressions
• Division by zero.
• Functions called outside their domain (e.g.:

sqrt(-1), log(-3), asin(2)).
• Evaluation of non-integer powers with nega-

tive argument
• Assertion violations for the model

In general some errors can be recovered automatically
by the system (e.g. by re-trying with a shorter time
step), whereas others abort the simulation and are re-
ported to the user, which can then enter the debugging
mode.

If an error cannot be recovered by the solver hierar-
chy, informative diagnostics are provided to the user.
The diagnostic error message includes the correspond-
ing equation block, the involved variables and their
values. Furthermore the hierarchical context of the er-
ror is important to be able to classify it.

In the next step the user may be able to enter the de-
bugging mode, where the simulation can be re-run to an
accepted step just before the error occurs again. The
last accepted step corresponds to the last point in time
in the result file created in the first run. This point in
time can be a breakpoint for debugging mode.

In the debug mode breakpoints are interpreted like
zero-crossings, but without the time-consuming search
process which the numerical solver does — the simula-
tion just breaks if the condition becomes true.

Then the step that caused the failure is executed in a
verbose mode, where informative diagnostic is provid-
ed for every equation that needs to be solved till the
error occurs again. This allows the user to trace the so-
lution process and if necessary, to engage by changing
the model.

6 Example Models for Debugging
In this section some simple test cases are shown which
demonstrate various possible error scenarios, and how a
debugger can help their troubleshooting.

6.1 Chattering Models

In the model ChatteringEvents1, chattering takes
place after t = 0.5, due to the discontinuity in the right
hand side of the first equation. Chattering can be de-
tected because lots of tightly spaced events are generat-
ed. The debugger allows to identify the equation from
which the zero crossing function that generates the
events originates.

model ChatteringEvents1
 Real x(start=1, fixed=true);
 Real y;
 Real z;
equation
 z = if x > 0 then -1 else 1;
 y = 2*z;
 der(x) = y;
end ChatteringEvents1;

Also in the model ChatteringNoEvents1, chattering
takes place after t = 0.5, due to the discontinuity in the
right hand side of the first equation. However, events
are not generated in this case, because of the noEvent
operator. If a variable-step-size integration algorithm
with error control is used, the time step will be reduced
to very small values once the discontinuity is hit, and
this can be detected by monitoring the value of time at
each time step.

The variable step size solver should be able to re-
port which state variable(s) give the biggest contribu-
tion to the error estimate, thus causing the step size re-
duction. The corresponding derivative shows very high
frequency oscillations between two values. The end
user can then use the BLT navigation functionality of
the debugger to investigate which variable/equation is
introducing the discontinuity.
model ChatteringNoEvents1
 Real x(start=1, fixed=true);
 Real y;
 Real z;
equation
 z = noEvent(if x > 0 then -1 else 1);
 y = 2*z;
 der(x) = y;
end ChatteringNoEvents1;

Regarding ChatteringFunction1, after t = 0.5, chat-
tering takes place due to the discontinuity in the right
hand side of the first equation. The discontinuity is
caused by a discontinuous function, which does not
generate events.

The considerations regarding variable-step solvers,
derivatives, and debugger BLT navigation are the same
as for the previous example ChatteringNoEvents1.
model ChatteringFunction1
 Real x(start=1, fixed=true);
 Real y;
 Real z;

function f_sign
 input Real x;
 output Real y;
algorithm
 if x > 0 then
 y := 1;
 elseif x < 0 then
 y := -1;
 else
 y := 0;
 end if;

Integrated Debugging of Equation-Based Models

200 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096195

end f_sign;

equation
 z = Functions.f_sign(x);
 y = 2*z;
 der(x) = y;
end ChatteringFunction1;

6.2 Models with Different Numerical Failure
Modes

The NonlinearSolverFailureInitial, model de-
scribes a simple hydraulic system with a pump, fol-
lowed by a valve, which fills a reservoir.

The initial value of the level of the reservoir is too
high for the pump sizing, so the pressure p2 is too high
and consequently the nonlinear algebraic system of
equations that determines p1 and w_pump has no solu-
tion.

It is possible to find a solution to the system either
by lowering the initial value of y, and thus the pressure
p2, or by increasing the value of the parameter dp0,
increasing the head the pump can provide.

The debugger can show the dependency of the non-
linear system of equations on the parameters dp0, a1,
a2, a3, and Kv (also showing their values), as well as
the dependency on p2 (which has a too high value).
Once one understands that p2 is too high, it should be
possible to continue the analysis, looking at the equa-
tion that determines p2, which in turn depends on the
value of the state y, which is the root cause of the prob-
lem.

The nonlinear system that cannot be solved has five
unknowns: w_pump, dp_pump, dp_valve, sqrt_dp,
and p1, which can be easily reduced to one by using
dp_pump as a tearing variable. The debugger can show
the torn variables and the tearing variables, as well as
the corresponding torn equations and implicit residual
equations, and allows to track the values of all five var-
iables during the iterations of the Newton algorithm.
model NonlinearSolverFailureInitial
 parameter SI.Pressure patm=101325
 "Atmospheric pressure";
 parameter Real Kv=1e-2 "Valve coefficient";
 parameter Real dp_small=1
 "Small dp for valve equation";
 parameter Real dp0=3e5 "Pump dp @ zero flow";
 parameter Real a1=1e6 "Pump coefficient";
 parameter Real a2=3e2 "Pump coefficient";
 parameter Real a3=3e2 "Pump coefficient";
 parameter SI.Temperature T0=20 + 273.15
 "Temperature of incoming fluid";
 parameter SI.Density rho=995
 "Density of fluid";
 parameter SI.Area A=0.01
 "Storage tank cross section";
 parameter SI.MassFlowRate w_extra=0
 "Extra mass flow rate into reservoir";
 constant SI.Acceleration g= 9.81
 "Acceleration of gravity";
 parameter SI.Temperature Tref=273.16
 "Reference temperature for specific

 enthalpy computation";
 parameter SI.SpecificHeatCapacity cp=4186
 "Cp of the fluid";
 SI.MassFlowRate w_pump
 "Mass flow rate from the pump";
 SI.Pressure p1 "Pump discharge pressure";
 SI.Pressure p2 "Storage tank inlet pressure";
 SI.Pressure dp_pump "Pump dp";
 SI.Pressure dp_valve "Valve dp";
 Real sqrt_dp "Regularized sqrt(dp)";
 SI.SpecificEnthalpy h0
 "Pump inlet specific enthalpy";
 SI.SpecificEnthalpy h1
 "Pump discharge specific enthalpy";
 SI.Power W “Pump power consumption”;
 SI.Length y(start=40, fixed=true)
 "Reservoir level";
 Real eta(final unit="1") =
 (p1 - patm)*w_pump/rho/W "Pump efficiency";
 SI.Temperature T1
 "Pump discharge temperature";
 SI.Time tau=1
 "Time constant of temperature sensor";
equation
 dp_pump = p1 - patm "Pump dp";
 dp_valve = p1 - p2 "Valve dp";
 dp_pump = dp0 - a1*w_pump^2;
 w_pump = Kv*sqrt_dp;
 sqrt_dp = dp_valve/
 (dp_valve^2 + dp_small^2)^0.25;
 W = a2 + a3*w_pump;
 w_pump*(h1 - h0) = W;
 rho*A*der(y) = w_pump + w_extra;
 p2 = rho*g*y + patm;
 h0 = cp*(T0 - Tref)";
 h1 = cp*(T1 - Tref)";
end NonlinearSolverFailureInitial;

A simple modification of the previous model allows
demonstration of the failure of the nonlinear solver in
the causalization stage during simulation. The initial
value of the level is reduced to 20, so that an initial so-
lution can be found.
model NonlinearSolverSimulation
 extends NonlinearSolverFailureInitial(
 y(start=20), w_extra=0.2);
end NonlinearSolverSimulation;

In this case the reservoir is filled both by the pump and
by an extra source. The mass flow rate of the pump
w_pump is determined by a nonlinear system with five
unknowns: w_pump, dp_pump, dp_valve, sqrt_dp,
and p1, which basically computes the operating point
of the pump as the intersection between the pump head
curve and the load (valve + reservoir head) curve. Note
that these curves have two intersections (also see
NonlinearSolverFailure3 later on). As the level
increases, w_pump is reduced, and the two intersections
get closer to each other, until at time t = 269 they col-
lide, making the system singular. As the level increases
further due to the extra source, this system ceases to
have any solution. This is a typical bifurcation pattern
in nonlinear systems.

The debugger can show that the condition number
of the Jacobian of the nonlinear system gets bigger and
bigger as the critical time when the two operating

Session 1E: Modelica Language & Compiler Implementation

DOI
10.3384/ECP14096195

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

201

curves become tangent to each other, suggesting that
this system becomes singular for some reason. Under-
standing the reason why this happens requires physical
insight into the model.

The model can be fixed by adding some mass stor-
age depending on the pressure p1, in order to avoid the
singularity in determining p1, and also by using a more
realistic cubic curve for the pump model, so that when
the limit level is reached, the solution will jump to a big
negative pump flow. Again, this requires physical in-
sight into the validity range of the implemented model.

Another slight variation of the model allows
demonstrating the case of finite escape time.
model FiniteEscapeTime
 extends NonlinearSolverFailureInitial(
 y(start=20));
 SI.Temperature Ts(start=T0);
equation
 tau*der(Ts) = T1 - Ts;
initial equation
 der(Ts) = 0;

end FiniteEscapeTime;

As the reservoir level increase, the flow rate w_pump
goes to zero. When it does, the energy balance equation
causes the specific enthalpy h1, and thus the tempera-
ture T1, to go to infinity.

The temperature T1 is the input of a first-order line-
ar system, representing the temperature sensor dynam-
ics. If a variable step-size solver with error control is
used, it will try to compute the state trajectory, which
also goes to infinity, so the solver eventually gets stuck
at time t = 664.

If the ODE solver reports information on the state
whose error estimate is causing the step size to be re-
duced, (Ts, in this case), then the debugger can point
the end user to its derivative der(Ts). It will be shown
that it depends on T1, whose values can be seen to
grow indefinitely over time. T1 is shown to depend on
h1, which also goes to infinity. Finally, h1 depends on
the energy balance equation, which depends on
w_pump. At that point it will become apparent that as
the flow rate w_pump goes to zero, the model becomes
ill-posed. The solution in this case is to change the
pump model, by adding to the energy balance some
dynamic energy storage and/or some heat transfer to
the ambient, in order to avoid the zero-flow singularity.

Finally, another small change to the original model
presented in this section allows to demonstrate the de-
bugging of models where the wrong initial solution is
picked by the nonlinear solver.
model WrongInitialSolutionSelected
 extends NonlinearSolverFailureInitial(
 y(start=20),
 dp_pump(start=-1000));
end WrongInitialSolutionSelected;

The operating point of the pump is determined by a
nonlinear system with five unknowns: w_pump,
dp_pump, dp_valve, sqrt_dp, and p1. It is assumed
here that dp_pump is selected as a tearing variable. At
time t=0, this system has two solutions, one with posi-
tive w_pump, and the other one with negative w_pump.
If the start value of the tearing variable dp_pump is
chosen incorrectly, the solver will converge to the
negative solution, then lock onto it for the rest of the
simulation.

When the user sees the negative w_pump in the sim-
ulation (which is physically wrong), he/she should be
able to analyze how this value was found at time t = 0.
The debugger shows that w_pump is solved by that non-
linear system, and shows the values of the tearing vari-
ables and of the torn variables at each iteration step.

It will then become apparent that the start value of
the tearing variable dp_pump leads to a negative value
of the torn variable w_pump, leading to the solution of
the problem, i.e., changing the start value of dp_pump
to a value that allows convergence on the desired solu-
tion.

7 Background and Related Work
Modelica is a declarative language that makes writing
equations easy while still producing efficient code.
However, traditional debugging tools like GDB [12],
Valgrind [19], or any of the other tools described in
[18] assumes that the program being debugged is
statement based. It also assumes that the user knows
something about what the program is doing. This is fine
if you are a Modelica compiler developer working on
fixing some segmentation fault in your own code. A
GDB-based approach exists for Modelica [4]; it works
fine for debugging algorithms in functions.

But as a Modelica user you know very little about
the internals of the run-time system. For example, there
is speculative execution while simulating a model mak-
ing debugging with GDB confusing.

There exists previous work on debugging in
Modelica. Bunus [9] proposes a semi-automated dy-
namic (run-time) debugging of models where the user
has to provide a correct diagnostic specification of the
model which is used to generate assertions at runtime.
Moreover, starting from an erroneous variable value the
user explores the dependent equations (a slice of the
program) and acts like an “oracle” to guide the debug-
ger in finding the error.

Sjölund [7] is used as the main basis of the equation
debugging part of this work. It was mainly focused on
tracing operations in the compiler backend. It has been

Integrated Debugging of Equation-Based Models

202 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096195

extended with structured error messages from the simu-
lation run-time system as well as an actual debugger.

Pop et al [3], [4] describe an integrated debugging
approach based on a dependency graph. Edges in that
dependency graph can be computed by the transforma-
tional tracing mechanism mentioned in Section 4.

8 Current Status
At the time of this writing, the implementation of the
debugger framework in the OpenModelica environment
is mostly complete but still missing some parts.

This debugger framework has three main parts: the
tracing of symbolic operations in the backend of
OpenModelica, reporting run-time errors in simula-
tions, and the debugger implemented as an extension of
the OMEdit graphical user interface.

The tracing of operations is complete, and the map-
ping of error positions in the low level generated code
to the high-level model from where they originated.
However, the reporting of run-time errors only works
for a subset of problems at the moment.

The generation of the XML file with the transfor-
mation tracing, and its subsequent representation in the
OMEdit GUI are fully implemented. Some types of
numerical errors (e.g., chattering) can already be de-
bugged as described in the paper.

However, the interface to the numerical solvers
(both for the casualization and for the time integration
steps) is still incomplete. Also the functionality of ana-
lyzing the results of simulation runs (which did not
generate errors) at specific points in time is not imple-
mented yet.

It is planned to have the implementation with the
abovementioned additional functionality completed by
fall 2014.

9 Conclusions and Future Work
We have presented a set of problems of simulating
Modelica models that benefits from increased debug-
ging tool support. We have also presented a design and
implementation of the first (to our knowledge) docu-
mented debugging framework that can handle this set
of problems.

The debugger is operational and has been tested on
rather large models without noticeable run-time over-
head. It is able to map error positions from low-level
compiled simulation code to the corresponding source
level equations in the Modelica model.

We believe that this kind of debugging support will
significantly improve the ease-of-use regarding applica-
tion modeling with Modelica compared to the current

situation typically needing a large amount of trial-and-
error and a lot of expertise in the internal mechanisms
of Modelica model compilers and simulation run-time
systems. This can speed up the acceptance and use of
Modelica in the engineering community.

Future work includes creating additional specialized
debugging views including a view to display non-
convergence of non-linear equation systems.

10 Acknowledgements
This work has been supported by the Swedish Strategic
Research Foundation in the EDOp projects and
Vinnova in the RTSIM and ITEA2 MODRIO projects,
and by VR. The Open Source Modelica Consortium
supports the OpenModelica work.

References
[1] Adrian Pop and Peter Fritzson (2005). A Portable

Debugger for Algorithmic Modelica Code. In Pro-
ceedings of the 4th International Modelica Confer-
ence, Hamburg, Germany.

[2] Adrian Pop, Peter Fritzson, Andreas Remar, Elmir
Jagudin, and David Akhvlediani (2006).
OpenModelica Development Environment with
Eclipse Integration for Browsing, Modeling, and De-
bugging. In Proc. of Modelica'2006, Vienna, Aus-
tria.

[3] Adrian Pop, David Akhvlediani, and Peter Fritzson
(2007). Towards Run-time Debugging of Equation-
based Object-oriented Languages. In Proceedings of
the 48th Scandinavian Conference on Simulation and
Modeling (SIMS’2007), see http://www.scan-
sims.org, http://www.ep.liu.se. Göteborg, Sweden.

[4] Adrian Pop, Martin Sjölund, Adeel Asghar, Peter
Fritzson, Francesco Casella. Static and Dynamic De-
bugging of Modelica Models. In Proceedings of the
9th International Modelica Conference
(Modelica'2012), Munich, Germany, Sept.3-5, 2012.

[5] Martin Sjölund, Peter Fritzson, and Adrian Pop
(2011a). Bootstrapping a Modelica Compiler aiming
at Modelica 4. In Proceedings of the 8th Internation-
al Modelica Conference (Modelica'2011), Dresden,
Germany.

[6] Martin Sjölund and Peter Fritzson (2011b). Debug-
ging Symbolic Transformations in Equation Sys-
tems. In Proceedings of the 4th International Work-
shop on Equation-Based Object-Oriented Modeling
Languages and Tools, (EOOLT'2011), Zürich, Swit-
zerland.

[7] Martin Sjölund. Tools for Understanding, Debug-
ging, and Simulation Performance Improvement of
Equation-based Models. ISBN 978-91-7519-624-4,
Linköping Studies in Science and Technology. Li-

Session 1E: Modelica Language & Compiler Implementation

DOI
10.3384/ECP14096195

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

203

centiate Thesis No. 1592, ISSN 0280-7971,
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-
90096, May 27, 2013.

[8] Peter Bunus and Peter Fritzson. Semi-Automatic
Fault Localization and Behavior Verification for
Physical System Simulation Models. In Proceedings
of the 18th IEEE International Conference on Auto-
mated Software Engineering, Montreal, Canada.
2003.

[9] Peter Bunus (2004). Debugging Techniques for
Equation-Based Languages. PhD Thesis. Depart-
ment of Computer and Information Science, Linkö-
ping University.

[10] Peter Fritzson. Principles of Object-Oriented Model-
ing and Simulation with Modelica 2.1, 940 pp., ISBN
0-471-471631, Wiley-IEEE Press. 2004.

[11] Peter Fritzson, Peter Aronsson, Håkan Lundvall, Kaj
Nyström, Adrian Pop, Levon Saldamli, and David
Broman (2005). The OpenModelica Modeling, Sim-
ulation, and Software Development Environment. In
Simulation News Europe, 44/45.

[12] Richard Stallman, Roland Pesch, Stan Shebs, et al.
(2011). Debugging with GDB. Free Software Foun-
dation. [online] Available at: <
http://unix.lsa.umich.edu/HPC201/refs/gdb.pdf>
[Accessed 30 October 2011].

[13] Open Source Modelica Consortium. OpenModelica
System Documentation Version 1.8.1, April 2012.
http://www.openmodelica.org

[14] Modelica Association. The Modelica Language
Specification Version 3.2 revision 2, July 30th 2013.
http://www.modelica.org. Modelica Association.
Modelica Standard Library 3.2.1. Aug. 2013.
http://www.modelica.org.

[15] Uri Ascher and Linda Petzold. Computer Methods
for Ordinary Differential Equations and Differential-
Algebraic Equations. Society for Industrial and Ap-
plied Mathematics, 1998.

[16] Willi Braun, Lennart Ochel, and Bernhard Bach-
mann. Symbolically derived Jacobians using auto-
matic differentiation - enhancement of the
OpenModelica compiler. In Modelica’2011.

[17] Sven Erik Mattsson and Gustaf Söderlind. Index
reduction in differential algebraic equations using
dummy derivatives. Siam Journal on Scientific
Computing, 14:677--692, May 1993.

[18] Andreas Zeller. Why Programs Fail, Second Edition:
A Guide to Systematic Debugging. ISBN: 978-
0123745156, 2009

[19] Nicholas Nethercote and Julian Seward. Valgrind: a
Framework for Heavyweight Dynamic Binary In-
strumentation. In Proceedings of the 2007 ACM
SIGPLAN conference on Programming language de-
sign and implementation. PLDI '07. San Diego, Cali-
fornia, USA, 2007, pp. 89-100. doi:
10.1145/1250734.1250746

Integrated Debugging of Equation-Based Models

204 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096195

