
General fault triggering architecture to trigger model
faults in Modelica using a standardized blockset

F.L.J. van der Linden, German Aerospace Center (DLR),
Institute of System Dynamics and Control.

Münchner Straße 20, 82234 Weßling, Germany
Franciscus.vanderlinden@dlr.de

Abstract
The implementation of faults in Modelica is cur-
rently not standardized, which leads to many non-
compatible implementations. To support the stan-
dardization of fault implementations, a new stan-
dard for fault implementation and triggering is
proposed. The proposed standard can handle pa-
rameter faults as well as variable faults during a
time simulation to cover all common fault pos-
sibilities. Using instance modifiers as well as an
inner-outer broadcasting method, the faults can
be triggered in a central block. Furthermore, care
was taken so that the simulation of the models
in a fault-free condition can be guaranteed. A li-
brary using the proposed standard was developed.
In this library, the fault implementation as well as
the triggering of these faults was modeled with
the end user in mind. An example implementa-
tion is presented which shows the capabilities of
the library.
Keywords: Failure, Fault, Modeling, Standardiza-
tion, Fault Injection

1 Introduction
Failure detection and health monitoring systems
to improve reliability and lower maintenance costs
become increasingly important. Therefore the de-
sign and testing of these algorithms need good pre-
diction models combined with an efficient way to
trigger all fault cases.
Implementing faults in Modelica models is no new
terrain. Many different implementations of real
systems have been made. For example Schallert
[8] did a reliability and safety assessment. The
faults are automatically identified based on pa-
rameter names. To set the parameters of the failed
parts, a function is used which automatically sets

the parameters before simulation. Gao et al. [3, 2]
did a fault analysis of electrical systems. To trig-
ger the faults, two different methods are used;
hard coding a fault in the model as well as cre-
ating a completely new model for a fault. Cui et
al. [1] modeled an actuator system with automat-
ically triggered faults. This automatic triggering
is based on the predefined fault probability, but
cannot be directly controlled. These works are all
examples where faults are triggered in a Model-
ica implementation. However, all of these imple-
mentations use different ways to trigger the faults.
Since there is a lack of standards implementation
ways, all users must find a way for them self to
trigger the faults.
Another approach for model-based diagnosis is
used by RODON [7]. Uncertainty intervals for
the model parameters combined with behavioral
models are used to trigger faults. However, time
simulations are not supported which limits its use
in many applications. Also FaultWeaver [6] can be
used to trigger faults in Modelica. It uses a set of
models in Modelica. An external (non-Modelica)
program is used to set the faults in Modelica and
simulate the results.
In this paper, a set of standardized fault-output
blocks is proposed in Section 3. These blocks use
a designated data type to clearly identify these
blocks as special fault blocks for further process-
ing. Using these blocks, it is possible to create
component models which include optional faults
by the user. Care has been taken to make sure
that all possible faults can be modeled by a sin-
gle or a combination of standardized fault blocks.
By analyzing the complete model, built from in-
dividual sub-models, a wrapper package can be
automatically generated which can be used to ac-
tivate all faults (Section 5). Care has been taken
that it is possible to completely eliminate the fault

DOI
10.3384/ECP14096427

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

427

code from a model to increase simulation perfor-
mance if not all faults are triggered. Furthermore,
also quick model testing without a fault setup is
possible.
The proposed implementation is based on a Dy-
mola implementation making use of the Ab-
stract Syntax Tree (AST) functions from the
ModelManagement library. By using the proposed
open and standardized fault blocks with a spe-
cialized fault type, it is possible to create similar
functionalities in all Modelica solvers.

2 Fault injection demands for
Modelica

To create a general environment to trigger faults
in Modelica, care must be taken that all possible
faults can be modeled using the proposed blocks.
To make sure all possible faults are covered, a
trade off study has been carried out. Fault imple-
mentations in the Modelica language can be gen-
eralized into classes. The following sections will
highlight the different fault classes.

2.1 Fault variability classes
For Modelica usage, two different classes of faults
can be identified:

1. Faults that have a very low time constant
with respect to the simulation horizon and
can be considered constant.

2. Faults with time constants faster than the
simulation horizon which will cause transient
behavior.

To further clarify the classes, a more detailed de-
scription including examples of each fault class is
given.

2.1.1 Parameter faults

The parameter fault class consists of faults that
have a low time constant compared with the simu-
lation horizon. Usually these faults are character-
ized by slow changes in time such as the variation
of the viscosity of oil due to an aging process in
a transmission application. Another example of a
fault with a slow time constant compared to the
simulation time are some high frequency electron-
ics simulations. In these simulations, the tempera-
ture of the environment can often be characterized

as constant. Some examples of parameter faults
are:

• Gear play
• Degradation of capacitors or batteries
• Oil viscosity degradation in a transmission
• Environment temperature increase in a fast

switching application

Due to the very slow nature of these faults with
respect to their simulation time, it is not necessary
to have the possibility to model fault transients.

2.1.2 Variable faults

The second class of faults are variable faults.
These faults are characterized by the possibility
that they can significantly change during a typi-
cal simulation. Quite often the study of a tran-
sient response is one of the main purposes of the
simulation of such faults. Some examples are:

• Semiconductor short circuit
• Breakage of hydraulic oil line
• Gearbox tooth breakage
• Screw jam

The faults in this class can vary during a sim-
ulation run, and can cause a dynamic system re-
sponse which might be of interest for the engineer.

2.2 Fault data type classes

The faults of both classes described in Section 2.1,
can be divided into three types to represent the
different cases needed to model faults.

2.2.1 "On-Off" faults (Boolean)

On off faults are marked by having only two dis-
crete states. Examples are jamming of a nutscrew
and disconnection of electrical cables.

2.2.2 Case faults (Integer)

Case faults are marked by having multiple discrete
failure modes. An good example is a semiconduc-
tor failure:

• Normal operation
• Short circuit
• Open loop

General fault triggering architecture to trigger model faults in Modelica using a standardized blockset

428 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096427

Constant Variable
On-Off Increased friction Screw jam
Mode Bearing fault mode Transistor
Continuous Gear play Oil loss

Table 1: Combined fault possibilities for Model-
ica models with examples. The choice between a
variable and parameter fault is not always directly
clear, and may need to be chosen as constant or
variable based on the length of the simulation

2.2.3 Continuous fault (Real)

A continuous fault is a fault without an explicit
discrete value. Examples are:

• Oil degradation
• Increased friction in a bearing
• Capacitor degradation

Combining the fault classes (Section 2.1) and the
fault class properties (Section 2.2), six different
combinations of faults are identified (see Table 1).
These possibilities can model all general and ad-
vanced faults. In the next sections, the imple-
mentation as well as some extra features for eas-
ier fault handling and simulation performance are
discussed.

2.3 Variable mode selection

To accommodate the reconfiguration of a model
with a variable fault, a mechanism to decide if the
fault can be activated during simulation must be
implemented. This reconfiguration can be neces-
sary to increase simulation speed in case of no fail-
ure or to switch between different failure modes.
In the case of a parameter fault, this is known by
definition. However in the case of a variable fault,
this is not known. To be able to reconfigure such
a model, it is therefore necessary to add a param-
eter signal flag which can be used to reconfigure
the model. For maximal flexibility, it is chosen
to add a mode selection using an integer constant
as a flag. This flag can be used to reconfigure a
model to include or exclude a fault. How to use
the values of the flag can be seen in Table 2.
The same effect as the mode selection is possible
by combining a parameter integer fault with an
variable fault. However, combining two fault in-
puts for one fault makes it hard to use consistent
naming.

Flag value Description
0 fault deactivated
1 (default) standard fault mode activated
2,3,... optional extra fault modes

Table 2: Variable mode selection flag

3 Fault triggering standardisa-
tion architecture

Defining faults types is not sufficient to define
a usable Modelica implementation. For a good
user-friendly implementation a well designed ar-
chitecture is vital. Different ways to set up a fault
triggering method are analyzed and their benefits
compared.

3.1 Fault Architecture
Controlling of the faults in a global model using
components with faults can be done in many dif-
ferent ways. Different ways are studied in this sec-
tion and it is decided which methods are selected
for the proposed standard.
To assess the overall performance of these meth-
ods, a set of criteria is defined to evaluate several
important aspects for fault triggering. The imple-
mentation effort of setting up the general archi-
tecture is not evaluated as this effort has to be
invested only once in the generation of the fault
library.
These criteria are:

(a) Non physical connections: The connec-
tions between the models should be based on
physical quantities. Faults do not have a phys-
ical connections as they are triggered by wear,
or external influences which are usually not
modeled.

(b) Ease of implementation: Effort for user
to create a model from instances using faults
(e.g. the development of a multistage gearbox
using predefined faulty gearbox instances)

(c) Maintainability: Effort to maintain a set of
models with faults. Typical tasks would be
adding or removing fault cases, restructuring
models and keeping a well documented set of
models

(d) Standardization: Standardization effort to
keep models compatible between different

Session 3B: Fault Handling and Safety Issues in Modelica

DOI
10.3384/ECP14096427

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

429

business partners.

(e) Transients: Possibility to model transients
used for variable faults (see for a description
Section 2.1.2).

Four methods to implement faults in Modelica
have been tried out and analyzed. The results
are assessed using the criteria (a through e).

1. Model parameters: Each fault is controlled
by a parameter in the model. It is possible to
"pull" these parameters up to the top level
model. Also direct changing of the instance
parameter in the model is possible. If the pa-
rameter is flagged appropriately, it is possible
to create a system with automated parameter
detection and central setting of the parame-
ters. Such a structure does not need non-
physical connections, is easy to implement for
the user and, if a proper automation is used,
can be well maintained. Also standardization
using the proposed flag methods is possible.
Since in this method it is only possible to han-
dle parameters, no transients can be used.

2. Model inputs: Inputs are used to control
faults in the models. By connecting the input
connectors, it is possible to create a central
element to control all faults. This method is
often used for small fault systems. However,
it leads to non physical connections between
the models. Due to the high customization,
maintainability and standardization cannot
be guaranteed. The ease of implementation is
good in small systems maintained by a single
person, but quickly becomes more and more
problematic as the model grows. Transients
can be handled well.

3. Bus system: A bus system to connect faults.
All fault signals are connected to a bus sys-
tem. This way is similar to the model in-
puts, except that all faults are organized in
one block. A bus system leads to non physical
connections. The ease of implementation and
maintainability depends highly on the com-
plexibility of the model, small systems can
be easily implemented and managed, but it
become quickly confusing. The standardiza-
tion is better than using a direct model input
since all faults are now marked in one fault-
bus. However, still no automated algorithms
can be used as it is impossible to properly

define a standard input. Transients can be
handled well as it is possible to connect vari-
ables to a bus.

4. Broadcasting: Using an inner-outer struc-
ture, the fault models can obtain their values
from a centralized point in the global model.
Using an automated routine, all appropriate
flagged faults can be found and managed in
one central point. No non-physical connec-
tions are needed. If standardized, flagged and
predefined fault blocks are used, the ease of
implementation and maintainability is high.
Also the standardization can be guaranteed
by flagging the models. Using an inner-outer
structure it is also possible to use transients.
However, when only parameter Faults are
used, this way of modeling is over complex
and will always need a full setup of the vari-
able faults. In contrast, it is possible to leave
most parameter faults at their standard value
and set only one fault without setting up a
complete fault system.

In Table 3, the previously discussed four differ-
ent approaches (1:4) are assessed using the criteria
(a:e). From this analysis follows that the usage of
model parameters (1) and a broadcasting system
(4) have most advantages. It is therefore chosen
to use following architecture:

• Model parameters to handle constant
faults

• Broadcasting system for variable faults

4 Standardized fault class defi-
nition

All faults in a model must be recognized by au-
tomated scripts, while at the same time the user
should have the freedom to name the model faults
arbitrarily. To do so, special fault classes have
been designed. This has the advantage that a fault
is identified by the class name, and can be inte-
grated without special care of instance names by
the user. These fault classes are released under
the Modelica 2 License.
Below the all fault classes are defined. For a pa-
rameter fault of the type Real, the type is defined
in Code 1.

General fault triggering architecture to trigger model faults in Modelica using a standardized blockset

430 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096427

Description (a
)
N
on

ph
ys
ic
al

co
nn

ec
ti
on

s

(b
)
E
as
e
of

im
pl
em

en
ta
ti
on

(c
)
M
ai
nt
ai
na

bi
lit
y

(d
)
St
an

da
rd
iz
at
io
n

(e
)
Tr

an
si
en
ts

(1) Model parameters + + + + -
(2) Model inputs - ± - - +
(3) Bus system - ± ± ± +
(4) Broadcasting system + ± + + +

Table 3: Fault triggering approaches. A detailed
description of the criteria can be found in Section
3.1

.

Code 1: Real parameter fault
type Parameter_Fault_Real =

Real "Value of the Real Fault";

Using this special fault class for each Real fault, it
is possible to clearly identify each instance of this
model as a Real parameter fault.
The same is done for variable faults. Since these
faults are more complex, a record with three pa-
rameters is used. In Code 2 the definition of this
Fault is shown.

Code 2: Real variable fault
record Variable_Fault_Real

" External Fault Triggering parameters "
Boolean externalFaultOn =false

" External fault controlling
(true = global)";

Integer faultIndex = 1
" External fault index";

Integer faultMode = 1
" Optional fault mode for model

reconfiguration ";
end Variable_Fault_Real ;

The first Boolean externalFaultOn is used to
switch between the local default fault defini-
tions and external global control. The integer
faultIndex is used to set the channel in the ex-
ternal global fault triggering (see Section 5). The
Integer faultMode is used to set the optional fault
mode selection as discussed in Section 2.3.

The examples given in this section are for Real
faults. The code for Integer and Boolean faults
can be found in Appendix A.
Using these class definitions, it is possible to set
up a complete fault triggering system. In Section
5 an implementation for Dymola using the Model-
Management toolbox is presented. Since these de-
fined faultclasses are open and standardized, algo-
rithms or plug-ins for programs can be developed
by users, also for other Modelica solvers.

5 FaultTriggering library
Beside the definition of a standard, a library has
been built to support the user with implement-
ing faults. Using the definitions from Section 4,
blocks are created which simplify the implemen-
tation of faults in a model. Two versions of these
outputs are made; one for textual modeling and
one for usage in the diagram layer. Also a method
to manage the fault signals in a single block is
proposed.
In Figure 1, an overview of the final fault set-
ting structure is given. In the generated wrapper
model, it is possible to set the parameter and vari-
able faults. The parameters are set in an automat-
ically generated structure (see Section 5.3.2) and
the variable faults are handled using a generated
bus system (see Section 5.3.3).

5.1 Parameter fault modeling
The textual modeling block for a parameter fault
is a simple block with a parameter of type
Parameter_Fault_Real (for Real faults). By ex-
tending this block in the model, a parameter fault
is directly correctly implemented and its name is
constRealFault.
In Code 3 the code for the Real parameter fault is
given. Parts of the complete path to the compo-
nents are abbreviated for a better overview. Inte-
ger and Boolean faults are implemented using the
same approach.

Code 3: Real parameter fault for textual modeling
block InternalConstantRealFault

" Generate constant Fault of type Real"
extends ...Icons.RealFault ;
parameter ...Types.Parameter_Fault_Real

constRealFault = 1
" Constant output value";

end InternalConstantRealFault ;

Session 3B: Fault Handling and Safety Issues in Modelica

DOI
10.3384/ECP14096427

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

431

Parameter Faults Variable Faults

FaultBus

Instance with faults

Wrapper with model and faultTrigger

In
ne
r-
O
ut
er

In
st
an

ce
M
od

ifi
er

Figure 1: Automatically generated wrapper model (yellow) which contains the extended original model
and the block faultTrigger. In this block all parameter and variable faults can be set. The parameter
faults communicate directly with the model instances using instance modifiers (pink dash-dotted line),
the variable faults using a bus system connected to a global inner/ outer system (orange dashed line).

The blocks for graphical modeling environ-
ment are extensions of the discussed tex-
tual modeling approach and the interface
Modelica.Blocks.Interfaces.SO . This creates
a block (see Code 4) with a single Real output
whose value is set by the fault parameter.

Code 4: Real parameter fault for graphical mod-
eling
block ConstantRealFault

" Generate constant signal of type Real"
extends Modelica.Blocks.Interfaces.SO ;
extends ...InternalConstantRealFault ;

equation
y = constRealFault ;

end ConstantRealFault ;

5.2 Variable faults
The variable fault blocks are more complicated to
implement than the parameter fault blocks. These
blocks need the information from a central block in
which the fault signal is defined. To do so an inner-
outer structure has been set up to communicate
the fault signals. In this section, first the global

block will be discussed followed by the local fault
blocks.

5.2.1 Global variable faults control

For each variable fault (Real, Integer and
Boolean), a single channel is reserved in a vari-
able with n channels (with n the number of
faults of each type). This variable is defined in
a central FaultTrigger block extended from
...FaultOutput.Partial_FaultTrigger. Each
fault can be coupled to fault sources using mod-
elica code in this global block. This can be done
by hand or an automated script which is proposed
in Section 5.3.3. The partial model can be seen in
Code 5. This model is defined as "inner" in the an-
notations, so that the local fault injection blocks
can communicate with this block.

Code 5: Partial model for variable fault input
framework
partial model Partial_FaultTrigger

" partial model defining fault classes "
parameter Integer realFaultSize

" Number of real fault channels ";

General fault triggering architecture to trigger model faults in Modelica using a standardized blockset

432 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096427

parameter Integer integerFaultSize
" Number of integer fault channels ";

parameter Integer booleanFaultSize
" Number of boolean fault channels ";

Real realFault [realFaultSize]
"Real Fault trigger ";

Integer integerFault [integerFaultSize]
" Integer Fault trigger ";

Boolean booleanFault [booleanFaultSize]
" Boolean Fault trigger ";

annotation (
defaultComponentPrefixes ="inner")

end Partial_FaultTrigger ;

5.2.2 Variable fault modeling classes

The variable fault models get their signals from
the global fault control model. In Code 6 the
code for a variable fault is given. In this model,
the variable fault is the actual fault value. Each
fault uses its own fault channel in the variables
realFault, integerFault and booleanFault.
To select which channel is to be used from these
variables, the parameter faultNumber is defined.
This parameter is generally set by an automated
system (see Section 5.3.3).
To be able to directly operate a model with
variable faults in the model for testing pur-
poses, a parameter with a default fault value
is defined in fault_local. Using the switch
(externalRealFault.externalFaultOn), the lo-
cal fault can be changed to the value defined in
the global fault block. Using this, it is guaranteed
that each block has a valid output without setting
up a global fault block.

Code 6: Real variable fault for textual modeling
block InternalRealFault

" Generate variable Fault of type Real"
extends ...Icons.RealFault ;
outer FaultTrigger faultTrigger ;
parameter Real fault_local = 1

" Default fault value if no external
triggering is used";

parameter ...Types.Variable_Fault_Real
externalRealFault =

...Types.Variable_Fault_Real ()
" External Fault Triggering parameters ";

Modelica.Blocks.Interfaces.RealOutput
fault "Final fault value";

protected
...Types.Fault_SelectRealFault

faultNumber ;
equation

faultNumber =
externalRealFault.faultIndex ;

fault =
if externalRealFault.externalFaultOn
then
faultTrigger.realFault [faultNumber]
else fault_local ;

end InternalRealFault ;

The faults for graphical modeling are made by ex-
tending Code 6 in a model with two outputs (Code
7): One real output for the fault signal and one
optional integer output for the mode signal.

Code 7: Real variable fault for graphical modeling
block VariableRealFault

" Generate variable signal of type Real"
extends ...Internal.InternalRealFault ;
parameter Boolean useModelModeSelection

" toggles external mode selection ";
Modelica.Blocks.Interfaces.RealOutput y;
Modelica.Blocks.Interfaces.IntegerOutput

mode = externalRealFault.faultMode
if useModelModeSelection

" Connector of Integer output signal ";
equation

y = fault;
end VariableRealFault ;

5.3 Automated fault handling
To keep overview of the faults in a model and
help the user with fault channel selection for each
fault, an automated fault handling algorithm is
developed. This algorithm can detect the pa-
rameter and variable faults in the selected model.
Also all faults in the instances used in this model
can be detected. Setting and internal handling of
these faults is different for parameter and variable
faults. A library is automatically generated which
contains a wrapper model that extends the orig-
inal model. Also a central block to manage the
faults is instantiated in this wrapper model. In
this block, the configuration of the parameter and
variable faults is handled.

5.3.1 Automated fault finding

Using the Dymola ModelManagement toolbox, it
is possible to investigate a model with its sub-
models. Using these features, it is possible to gen-
erate a model tree from a model with all instances.
A schematical example of such a model tree can be
found in Figure 2. Using the type definitions from
Section 4, all faults in a model can be found and

Session 3B: Fault Handling and Safety Issues in Modelica

DOI
10.3384/ECP14096427

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

433

A

A.A

A.B

A.C
A.C.A

A.C.B

Figure 2: Model tree with faulty models on several
levels. Blocks with a lightning symbol (A.A &
A.C.B) are extensions of the standardized fault
classes.

classified. Also the "path" to the model can be
found. The complete path of the fault instance
bearing_stuck in the model Actuator will
be represented as Actuator.bearing_stuck. In
the following sections, the generated fault tree and
fault classification will be used in the implemen-
tation of the library features.

5.3.2 Global parameter setting

All the parameter faults can be found and identi-
fied using a method described in Section 5.3.1. It
is possible to directly change these values by using
an instance modifier generated by the fault-search
algorithm by hand.
However, in case of large models with many faults
or many different cases to analyze, this can quickly
become unclear and tedious. To aid the user,
a structure is automatically generated using the
scripts supplied in the library which includes all
faults together with their default values. This
structure is used as a parameter in the global
faultTriggering model. These values are au-
tomatically linked to the instance modifiers in the
wrapper model. By creating different fault struc-
tures, fault cases can be defined. Each fault struc-
ture stands for a clearly defined simulation case.

5.3.3 Global variable setting

To aid the user with setting the variable faults, a
hierarchical faultbus is generated from the fault
structure (see Figure 1). It is possible to di-
rectly connect the fault source signals to the hier-
archical bus. The hierarchical bus system itself is
connected to the realFault, integerFault and
booleanFault variables (see Section 5.2.2). The
corresponding fault index is automatically set in

Figure 3: Automatically generated Fault library

the model using component modifiers. Using this
approach, mistakes with mixing up the channels
are not possible, as this is automated. Also the
use of an automatically generated bus makes con-
necting the fault sources easy.
In Figure 3, a generated library is shown with its
default components.

6 Examples
To test the library functionality a simple actua-
tor model is built consisting of a motor with PID
control, a simple driveline and a load. The total
model has 6 faults: 2 parameter faults, and 4 vari-
able faults. Using the fault processing algorithms
presented in Section 5.3, a package is generated.
The model wrapper adds the faultTrigger block
in which all faults can be set. In this block all
fault inputs are defined. The variable faults are
set in the block of type FaultTriggerController
(instance faultTrigger). Using the parameter
record in this block, it is possible to set all pa-
rameter faults. An overview of this functionality
is shown in Figure 1.
The result of a simulation with progressive faults
is shown in Figure 4. The dynamic effects of a
breaking component can be seen by the changing
response of motor speed and torque. By changing
or duplicating the faultTrigger block, it is possi-
ble to create multiple fault scenarios for a single
model. The original model stays unchanged and
can be used for all analysis, healthy as well as bro-
ken.

7 Conclusion and Discussion
In this paper, a method to standardize the im-
plementation of faulty components in Modelica is
specified. It is possible to implement parameter,
as well as varying fault signals. The code for the
proposed faulty components is included to aid the

General fault triggering architecture to trigger model faults in Modelica using a standardized blockset

434 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096427

Figure 4: Results of a simulation with progres-
sive faults. At t=0.2s the motor constant drops,
at t=0.4s, an increased friction in the driveline is
triggered, at t=0.6s, the speed sensor of the motor
breaks and finally at t=0.8s the driveline bearing
gets stuck.

standardisation of fault implementation in Mod-
elica.
Moreover a library has been created which sup-
ports the user to set these faults by automatic
generation of a wrapper library. This wrapper in-
cludes all parameter faults in a parameter struc-
ture and a bus system to connect the variable
faults. This functionality is enabled by the im-
plementation of a search algorithm to search the
model for the standardized fault classes.
An example model has been built and the methods
to implement the faults in the model have been
proved valuable. At the moment the proposed
Fault Library is used in the Actuator EMA library
[4, 5, 9]. The standardization of these faults has
led to an easy implementation process. The model
designer can focus on implementing the faults in
the model without paying attention to the inter-
faces and the compatibility between the models.

Acknowledgement

The research leading to these results has received
funding from the European Union’s Seventh

Framework Program (FP7-284916) for ACTUA-
TION 2015 under grant agreement no. 284915.

A Modelica Code for Faults

The code for the implementation of the fault
classes is given in this section. Using strictly this
code, it is possible for automated fault systems to
search for all faults in a model.

A.1 Real faults

Code 8: Real parameter fault
type Parameter_Fault_Real =

Real "Value of the Real Fault";

Code 9: Real variable fault
record Variable_Fault_Real

" External Fault Triggering parameters "
Boolean externalFaultOn =false

" External fault controlling
(true = global)";

Integer faultIndex = 1
" External fault index";

Integer faultMode = 1
" Optional fault mode for model

reconfiguration ";
end Variable_Fault_Real ;

A.2 Integer faults

Code 10: Integer parameter fault
type Parameter_Fault_Integer =

Integer "Value of the Integer Fault";

Code 11: Integer variable fault
record Variable_Fault_Integer

" External Fault Triggering parameters "
Boolean externalFaultOn =false

" External fault controlling
(true = global)";

Integer faultIndex = 1
" External fault index";

Integer faultMode = 1
" Optional fault mode for model

reconfiguration ";
end Variable_Fault_Integer ;

A.3 Boolean faults

Session 3B: Fault Handling and Safety Issues in Modelica

DOI
10.3384/ECP14096427

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

435

Code 12: Boolean parameter fault
type Parameter_Fault_Boolean =

Boolean " Value of the Boolean Fault";

Code 13: Boolean variable fault
record Variable_Fault_Boolean

" External Fault Triggering parameters "
Boolean externalFaultOn =false

" External fault controlling
(true = global)";

Integer faultIndex = 1
" External fault index";

Integer faultMode = 1
" Optional fault mode for model

reconfiguration ";
end Variable_Fault_Boolean ;

References
[1] Cui, X., Ma, J., and Zeng, S. The

fault modeling methodology of actuator sys-
tem based on Modelica. The Proceedings of
2011 9th International Conference on Relia-
bility, Maintainability and Safety (June 2011),
997–1002.

[2] Gao, J., Ji, Y., Bals, J., and Kennel,
R. Fault Detection of Power Electronic Circuit
using Wavelet Analysis in Modelica. In Pro-
ceedings of the 9th International MODELICA
Conference (Munich, Germany, Sept. 2012),
no. 76, pp. 513–522.

[3] Gao, M., Hu, N., Qin, G., and Xia,
L. Modeling and fault simulation of propel-
lant filling system based on Modelica/Dymola.
2008 2nd International Symposium on Sys-
tems and Control in Aerospace and Astronau-
tics (Dec. 2008), 1–5.

[4] Giangrande, P., Hill, C., Gerada, C.,
and Bozhko, S. Multi-Level Library of Elec-
trical Machines for Aerospace Applications. In
Proceedings of the 10th International Modelica
Conference (2014).

[5] Hill, C., Giangrande, P., Gerada, C.,
and Bozhko, S. Implementation of a Multi-
Level Power Electronic Inverter Library in
Modelica. In Proceedings of the 10th Inter-
national Modelica Conference (2014).

[6] Junghanns, A., Mauss, J., and Tatar, M.
TestWeaver - A Tool for Simulation-based Test

of Mechatronic Designs. In Proceedings of the
6th International Modelica Conference (2008),
pp. 341–348.

[7] Lunde, K. Object-oriented modeling in
model-based diagnosis. Proceedings of Model-
ica Workshop, Lund, Sweden (2000), 111–118.

[8] Schallert, C. Inclusion of Reliability and
Safety Analysis Methods in Modelica. In Inclu-
sion of Reliability and Safety Analysis Methods
in Modelica (June 2011), pp. 616–627.

[9] van der Linden, F., Schlegel, C.,
Christmann, M., Regula, G., Hill,
C., Giangrande, P., Maré, J.-C., and
Egaña, I. Implementation of a Modelica
Library for Simulation of Electromechanical
Actuators for Aircraft and Helicopters. In
Proceedings of the 10th International Modelica
Conference (2014).

General fault triggering architecture to trigger model faults in Modelica using a standardized blockset

436 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096427

