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Abstract

The formulation of the wheel-rail contact is a cru-
cial issue in simulations considering the running
dynamics of railway vehicles. Therefore a model-
ing environment that is dedicated to railway ve-
hicle dynamics such as the new DLR RaiwayDy-
namics Library relies on an efficient representation
of the kinematics and forces or torques, respec-
tively, that appear at the wheel-rail interface. A
number of different formulations have been devel-
oped since the underlying rolling contact problem
was firstly discussed in literature in 1876. The
paper overviews these wheel-rail contact formula-
tions and then presents the implemented variants
in detail. The DLR RailwayDynamics Library is
used to model and simulate the behavior of an ex-
perimental scaled M 1:5 running gear operating
on the DLR roller rig. The simulations results
are compared and validated with measurements.
Keywords: railway vehicles; wheel-rail contact; ve-
hicle dynamics; multibody simulation

1 Literature Review

1.1 Introduction

The wheel-rail interface is a constitutional element
of railway vehicles. Knothe et al. [1] tell its three
fundamental tasks each associated to a specific
contact force component: load-bearing to the ver-
tical force, guiding to the lateral force and traction
to the longitudinal force. Although this appears
to be very similar to the tire-road interface for au-
tomotive vehicles, the wheel-rail interface differs
fundamentally due to wheel-rail geometry and the
different material behavior of both contact part-
ners which are made of steel.

The contact between wheel and rail in normal

Figure 1: Exemplary contact patch between wheel
and rail and a qualitative surface plot of the asso-
ciated normal stress distribution

direction is very stiff. The deformations of the
contact partners add up to 1/10 or 2/10 mm, the
contact area has an approximate size of 1 to 2 cm?
although the usual transmitted vertical loads are
very high, i.e. in the order of magnitude of 10 tons.
Fig. 1 gives an impression of the size of the contact
patch and the normal stresses here presented with
a maximum of roughly 700 N/mm?.

In the tangential direction the contact behav-
ior is ruled by friction. Therefore it depends on
the normal contact conditions with friction coeffi-
cients between 0.1 and 0.4 and exhibits non-linear
behavior and saturation.

This general specification already exposes the
complexity of the wheel-rail contact problem
which is also demonstrated by Fig. 2. There, the
contours visualize the normal stress distribution
as it is already given by the surface plot in Fig. 1.
The arrows represent the tangential stress vectors
and the circles indicate the points where the wheel
surface slips along the rail surface since adhesion
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Figure 2: Exemplary contact stresses and the asso-
ciated slip region evaluated according to Kalker’s
non-elliptical rolling contact theory [2]

is depleted locally.

The fundamental normal and tangential contact
properties motivate the use of conical wheel pro-
files so that the normal contact does not only carry
vertical loads but as well contributes to the lat-
eral guiding task. The additional consideration of
undesired profile changes due to wear led to the
evolution of specific wheel and rail profiles as they
are shown in Fig. 3, see [3] for a more elaborate
discussion on the significance of the profile geom-
etry. It is obvious that such profile design intro-
duces another complexity into the formulation of a
wheel-rail contact model due to the geometry. For
example, the shape of the outer stress field bound-
ary in Fig. 2, usually denoted as non-elliptical, is a
particular result introduced by the non-linear pro-
file geometry.

1.2 Basic Modeling Issues

The goal of the modeling presented in this paper
is to provide the capability of simulating the run-
ning dynamics of railway vehicles. Hence, it is
important that the resultant forces that dominate
the motion of the railway vehicle and are to be
computed very often during one simulation job,
are evaluated in reasonable accuracy and with low
computational burden. However, it is not intended
to give detailed and high accuracy information on
the contact stress distribution as shown Fig. 2 and
as it is required in order to examine e.g. rolling
contact fatigue.

It is therefore a usual approach to review the

taper line distance

7‘;"_'_.“

wheel tread | tape circl wheel diameter
\ L/
|
i Y
104 ! | 1
i ) flange height
Y
flange
rail tread _ width_
! M > wheel gauge
| -+
PN\ e
c!
gl
5!
cll .
S rail gauge
gii K -
|i
=
|

Figure 3: Terminology and characteristics of wheel
and rail profile

wheel-rail contact problem looking for reasonable
assumptions that simplify the modeling and re-
duce the computational effort. Tab. 1 gives an
overview on widespread assumptions which may
be applied according to the specific analysis goals
at hand.

The separation assumption for example allows
for introducing a virtual contact point where the
resultant forces and torques acting on the wheel
are assumed to be attached in order to simulate
running dynamics. However the magnitude of the
forces and torques are evaluated considering the
contact problem separately.

Presuming identical materials for wheel and rail,
the separation assumption together with the half-
space approximation makes it possible to evalu-
ate the normal contact first and independently and
then derive the tangential stress quantities on top
of it [1, Sec. 3.3.2].

Combining these two main simplification ideas
with the discussion in Sec. 1.1 facilitates the for-
mulation of the wheel-rail rolling contact problem
by subdividing it into the following three subtasks
that may be solved subsequently: the geometri-
cal problem, the normal contact problem and the
tangential contact problem.

A basic modeling aspect that is related to the
multibody representation of the wheel-rail contact
is the distinction drawn between rigid and elastic
contact. In multibody theory the latter is equiv-
alent to the description of the normal wheel-rail
contact as a force law, while the ideal rigid contact
leads to the concept of a kinematical constraint, so
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Separation assumption

The deformations of the contacting bodies do not influence their over-
all motion so that wheel and rail may be assumed to be rigid bodies.
Structural and contact mechanics may be considered independently from

each other.

Linearity

The deformation fields are geometrically linear.

Half-space assumption

The contact area is very small compared to the characteristic dimensions

of the related bodies in contact.

Ideal material

The material is linear-elastic, homogeneous and isotropic.

Identical material

Wheel and rail consist of identical materials.

Steady state assumption

The running velocity is small compared to the wave propagation within

the material, so that quasi-static conditions are valid with respect to the

contact problem.

Hertz assumption

The geometry of the contacting surfaces may be approximated as elliptic

paraboloids so that the contact patch turns out to be a plain ellipse.

Dry Coloumb friction

Only dry friction is considered. The friction coefficient is constant and

valid for adhesion as well as for sliding.

Table 1: Overview on assumptions frequently exploited for wheel-rail contact modeling, cp. [1, Ch. 3]

that the equations of motion form a differential-
algebraic system [4]. The rigid contact requires a
sophisticated preprocessing to guarantee the dif-
ferentiability of the constraint equation and avoid
artificial contact point jumps [5]. However, it is
assumed to need less computational effort for time
integration compared to the elastic contact that
introduces very high stiffnesses into the equations
of motion, but provides a more general applicabil-
ity [6].

In the discussion so far it is assumed that the
contact between wheel and rail forms one contin-
uous contact area that may be idealized by one
single contact point, which in fact is the dominant
standard case. However specific configurations
such as switch crossing or light urban and metro
railway vehicles in sharp curves exist where mul-
tiple, non-connected contact areas between wheel
and rail surface occur. These configurations re-
quire the consideration of multiple contact points,
see e.g. [7] or [4].

1.3 The Normal Contact Problem

The basis for the highly accurate non-elliptical
contact description e.g. shown in Fig. 2 has been
set by Kalker [8] who implemented the program
Contact that became a reference for railway con-
tact problems. Contact fully accounts for the pro-
file geometry of wheel and rail so that the sim-
plification of the Hertz assumption from Tab. 1 is
not employed. However, the half-space assumption
is exploited to evaluate the stress and deforma-

tion field numerically. Contact is mainly applied
for verification purposes in offline calculations. In
addition, the same methodology has been used
for detailed research about the influence of struc-
tural dynamics of wheel and rail on the vehicle-
track interaction [2]. However for industrial ap-
plications, the accurate consideration of the non-
elliptical contact requires too many computational
resources, see e.g. |9] for optional approximations.

A very frequently used normal contact model in
railway dynamics analysis is the elliptical contact.
Here, the deviation of the contacting surfaces of
wheel and rail from the ideal ellipsoidal shape is
neglected and the contact stresses and deforma-
tions may be evaluated analytically according to
the Hertz theory, see e.g. [10, Sec. 4.I1.A].

For the sake of completeness the Finite Element
Method shall be mentioned as a very general way
to evaluate contact problems that does not rely
on any of the mentioned simplifications in Tab. 1.
Effects such as surface hardening, material flows
or damage mechanism can be taken into account,
see e.g. [11].

1.4 The Tangential Contact Problem

As soon as a relative motion, the so-called slip,
between the contact point on the wheel and its
counterpart on the rail occurs, tangential forces
are transmitted. The program Contact is a wide-
spread accepted reference to solve as well this tan-
gential contact problem.

However in order to facilitate vehicle simu-
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lations, Kalker proposed a simplified theory of
rolling contact based on discretized ellipses and
provided the Fastsim [12] algorithm that never-
theless takes traction and saturation into account.

For vanishing slip, if e.g. only very small trac-
tion forces are given, the linearized theory of
Kalker (8, Sec. 2.2.2] is valid. Here, the tangen-
tial forces are a linear function of the slip.

A different class of tangential contact models try
to get along with purely analytical considerations,
as it is already done for the normal contact using
the Hertz solution. However, these contact models
require an assumption concerning the shape of the
stick and slip region within the contact area. The
basic idea originates from Carter [13], who showed
that the tangential stress distribution of a cylindri-
cal body rolling on a plane may be presented by
two nested ellipses. The extension to three dimen-
sions however relies on approximations that were
proposed e.g. by Vermeulen and Johnson or by
Shen, Hedrick and Elkins [13].

Following the same basic concept Polach [14]
published a very efficient tangential contact solu-
tion in 1992 that coincides with Kalker’s linear
theory in the case of vanishing slip. In addition
an extension is proposed for applications on the
adhesion limit in which high traction forces are
involved [15]. Besides the Fastsim algorithm the
Polach model is wide-spread for multibody railway
vehicle simulations today, see [16] for an assess-
ment of various approaches.

1.5 Review Conclusions

The Modelica implementation of the wheel-rail
contact is in particular supposed to support the de-
velopment of new railway vehicle control concepts
that are on the agenda of the DLR internal project
Next Generation Train (NGT) [17]. For this pur-
pose accuracy and computational effort have to be
compromised. Therefore it has been decided to im-
plement a rigid elliptical single point contact with
tangential force law according to Polach.

2 Theory

2.1 Profile Geometry and Contact

In order to formulate the rigid contact, we look
for an implicit constraint equation that defines the
vertical wheel displacement z,, as a function of the
lateral displacement ,,, the yaw angle 1 and the

R, )
f | \«G(m |

Figure 4: Parametrization of the profile geometry.

roll angle ¢ of the wheel [5], i.e.
(1)

which is two times continuously differentiable
[18]. 2z, and y, are resolved with respect to
the rail coordinate system R in Fig. 4, where the
parametrization of the wheel profile F' = F(s) and
the rail profile G = G(y) is visualized as well.

The wheel surface S,, may be given in cylindrical
coordinates of the wheel, i.e. Sy, : (F(s),7,s)T, or
resolved with respect to R:

Zw+f(yw,§0,¢):0,

0 F(s)sint
Swics = |yuw | +Alp,¢) s , (2)
Zw F(s)cosT

where A(p, 1)) represents the rotations around the
z- and the z-axis of the wheel.

Those points on S, whose normal vectors to
the surface are parallel to the (y, z)-plane of the
rail define the curve C, that is the projection of
the wheel contour in the (y, z)-plane of the rail [19,
Sec. 2.2|:

Cy:co = {cs :sinT(s) = —tanvy F(s),

cosT(s) =14/1— sinQT(s)} . (3)

We now specify the curve C'r to be independent
from the vertical position of the wheel z,,
. _ T ._ T
Cg:cp = (zp,yp,28)" =cc—(0,0,24)" , (4)

which can be exploited to relate the wheel contour
z2p = 2E(S; Yw, @, 1Y) to the associated rail profile
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G(ye) = G(s;yuw, v, ) as a function of the para-
meter s, s < s < 8.
Wheel and rail are in contact iff

~0. (5)

zw+ max (zg — G)
EA A
A(8; Y, 0, 7))

The function A(S;yw,@,?) in (5) is called the
height function [5]. The value s* that is assigned
to the global maximum of A specifies the contact
point.

The direct application of (5) as constraint equa-
tion in multibody simulation for standard wheel-
rail profiles such as S1002 and UIC60 does not
make sense, since these profiles expose abrupt cur-
vature changes and promote artificial jumps of the
normal contact forces [4]. Therefore Arnold et al.
[5] propose to use a regularization parameter o > 0
in the range 107°...5-107° in the following way:

Zw + Smaxga)A(& Yw, P, ¢) =0 5 (6)

/Sexp (A(S,yz, WJ)))dS

smax(MA ;= aln == =
J; ds

For small values of « it can be shown that
smax\ A < max, A, ie. (6) yields values of z,
that represent a small penetration §,,, of the wheel
and rail bodies. The proposed values of « are cho-
sen in such a way that §,,, corresponds to the phys-
ical deformations of the contact partners, which
could be evaluated e.g. according to the Hertzian
theory. Therefore (6) is called the quasi-elastic
contact model by Arnold et al..

The listing below shows that the geometrical
problem is tackled by a Modelica function that
takes yy, ¢, ¥ and « as inputs and mainly returns
zy in addition to quantities that are necessary for
the tangential contact evaluation:

function findQuasiElasticContact
"finds contact points on wheel and rail"
import Modelica.Constants.pi;
import SI = Modelica.SIunits;
input SI.Position y_w
"lateral displacement of wheel";

input SI.Angle phi "roll angle [radl";
input SI.Angle psi "yaw angle [rad]";
input SI.Radius rO "nom. wheel radius";
input Real alpha "smoothing parameter";

output SI.Position z_w "vertical
displacement of wheel center point";
output SI.Position sO
"lateral contact coordinate on wheel";

output SI.Position vO

"lateral contact coordinate on rail";
output Real rho_x(final unit="m-1")
"principal curvature at contact point

in the plane normal to x-axis";
output Real rho_y(final unit="m-1")
"principal curvature at contact point

in the plane normal to y-axis";
output SI.Angle delta "contact angle";

The quantity s is an internal vector variable of
this function which disretizes the wheel profile, e.g.
s ={-0.05,-0.0499, ....,0.05}.

2.2 Kinematics

Consider the coordinate system in Fig. 5 in order
to resolve the vectorial quantities in what follows.
The e,-vector is normal to the wheel and the rail
surface in the contact point C, e, is perpendicular
to the wheel axis and heads in running direction.
vp is that component of the absolute velocity of the
wheel center point v,, that points in e,-direction.
wy 1s the absolute angular velocity of the wheel
that includes yaw, roll and the overturning motion
wo of the wheel.

The sliding velocity vs [20, Sec.2.6.2| in C fol-
lows from

(7)

Vs = Uy + Wy X T

and is used together with w,, to compose the slip
vector v with the longitudinal slip v,, the lateral

Figure 5: Coordinate system associated to the
plane through contact point C.
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Figure 6: Icon layer of the contact model.

slip v, and the spin ¢.:

Vy 1 Usg
V=1 " | = | Vs (8)
¢z 0 Wz

Fig. 6 shows the the icon layer of the contact
model with two multibody frame connectors from
the Modelica Standard Library. The frames have
to be connected to the center of the wheel and to
the reference point on the rail which correspond
to the points W and R in Fig. 4. The kinematical
information of these two frames are required to
evaluate (7) and (8).

The contact model does not have a state but rep-
resents a loop-closing element, which corresponds
to the property that the wheel surface is con-
strained to be in touch with the rail surface. The
constraint is formulated using the function from
Sec. 2.1. As a result, the contact force in normal
direction, i.e. normal to the plane through the
point C according to Fig. 5 implicitly follows from
the closed loop condition.

2.3 Hertzian Normal Contact

The pressure distribution p in the contact plane ac-
cording to the Hertzian theory [21, (3.65)] is given
by
3f, [ 1 1

~ 2mab ! a? b2’ ®)
where f,, represents the absolute value of the nor-
mal force, while a and b denote the semi-axes of
the contact ellipse and follow from

p(z,y)

3(1 - ’Qz)fn
E(A+B)’

11— KQ)fn
E(A+ B)

Beside Young’s modulus E and Poisson’s ratio s
that are assumed to be identical for wheel and rail,
(10) uses auxiliary terms that are determined by

the curvature of the wheel p,, and the rail p,,
measured in the plane normal to the z-axis and
the wheel curvature in the plane normal to the
Y-axis Py:

A-B
A = pyz + Pre, B = puys ﬁ:arccosA+B.

m and n are coefficients depending on elliptical
integrals and specify the eccentricity of the contact
ellipse. Tab. 2 is an extraction of [21, Tab. 3.4] to
give an impression on their quantitative values.

9 [0°] 05° 1° | 10° | 45° | 90°
m [ oo| 614 | 3689 | 6.604 [1.926] 1
n | 0 ]0.1018 | 0.1314 | 0.3112 | 0.604 | 1

Table 2: Hertzian parameters for the contact el-
lipse.

In [5], it is proposed to introduce a weigthed
mean value of the curvatures in (10) that corre-
sponds to (6), e.g. to consider the wheel curvature

o f; puy(s) exp () ds
T e (B)ds

(11)

Eq. (11) is implemented in the function presented
in Sec. 2.1 as indicated by the output values given
there.

2.4 Linear Tangential Contact

For vanishing slip Kalker’s, i.e. for small values of
v, linear theory [8, Sec. 2.2.2] is valid so that the
creep forces f, and f, in and the torque [, normal
to the xy-plane depend linearly on the slip v under
consideration of the shear modulus G:

Ja
f=|f,]=Cv with (12)
L
Ch1 0 0
C = —abG 0 022 \/6%023
0 —VabCss abCss

For the sake of demonstration Tab. 3 shows exem-
plary values of the coefficients that appear in (12).

2.5 Polach’s Tangential Contact

According to Polach [14] the torque [, in (12) is
usually very small and can be neglected, while the
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b/a| 1 |08 ] 06 | 04 | 02 | 01

Ci1 | 4121436 | 4.78 | 557 | 7.78 | 11.7
Co | 3.67 | 3.99 | 4.5 548 | 814 | 12.8
Cos | 1.47 | 1.75 | 2.23 | 3.24 | 6.63 | 14.6
Cs3 | 1.19 | 1.04 | 0.892 | 0.747 | 0.601 | 0.526

Table 3: Coefficients of Kalker’s linear theory of
rolling contact for k = 0.25 and a > b (8, E3|.

influence of the spin ¢, on the lateral creep force f,
may be of considerable importance. This is why
his creep force law considers two lateral compo-
nents: f; denotes the creep force that originates
from lateral slip and f is associated to the spin:

J

fF=\n+7h (13)
0

The tangential force in Polach’s model is defined
in the direction of the slip resultant v taking the
influence of the spin into account:

7= /12 4+ 2
V=\Vy TV,

Vo vy +ad.| > |y
v ‘Vy+a¢Z| < |Vy|

(14)

In order to evaluate the resulting friction force f it
is postulated that the tangential stresses grow lin-
early with the distance from the leading edge until
saturation is reached. Hence, the analytical inte-
gration of the assumed stress field over the contact
patch leads to

. 2fnpt ( kag

m \ 1+ (kqe)
where 1 denotes the friction coefficient, k, and kg,
ks < kg < 1, are reduction factors associated to
the adhesion or the slip area, respectively. They
have been introduced by Polach [15] in order to ac-
count for wet or polluted conditions. € represents
the gradient of the tangential stress in the area of
adhesion at the leading edge of the contact patch
and is related to the coefficients of Kalker’s linear
theory:

. Gwaijj Cii — CIZIV%
g = 5 75 — D) b} +
dfnp vy vy

The subdivision of the f into its two components
corresponds to the slip partitions:

f= 5 —|—arctan(/~€ss)>, (15)

2 9
O3y vy

2 2"
vy t vy

The remaining creep force component f; is evalu-
ated separately yielding

e ¢$:9afup(1+63(1—e b))
fy = —; 16 ) .

3 2 _
o (G517

where the tangential stress gradient due to spin €*
and the abbreviation § are used:

E* . 8Gb\/% k‘a023 |D ’ 5= 6*)2
3fap(l+63(1—e8)) 77 (e%)241

For traction vehicles running on adhesion limit,
the dependence of the friction coefficient on the
slip velocity may be considered relating the max-
imum friction coefficient pg to the limit friction
coefficient p, at infinite slip velocity introducing
the parameter B:

on[(-5)

The above used constants kq, ks, po, feo and B
are heuristic quantities that have been introduced
to account for deviations from theory observed by
measurements. Tab. 4 quotes Polach to give typi-
cal values.

e~ Bvse 4 ”O"] L)

Ho

conditions‘ kg ‘ ks ‘ 1o ‘ Lo ‘B[S/m]
1.00 | 0.40 | 0.55 | 0.22 0.60
0.30 | 0.1 | 0.30 ] 0.12 0.20

dry
wet

Table 4: Typical model parameters for dry and
wet conditions of the real wheel-rail contact [15].

3 Application

3.1 Project Background

Fig. 7 shows an experimental running gear in
scale 1:5 that operates on the DLR roller rig in
Oberpfaffenhofen. Unlike usual wheel-set config-
urations this running gear has independently ro-
tating wheels each driven by one wheel hub mo-
tor. Two opposite front wheels are mounted to-
gether on a cranked beam, the two rear wheels
mounted on their carrier constitute the identical
second wheel pair unit. Each wheel pair unit is
connected to the central frame having one rota-
tional degree of freedom around the vertical axis.
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Figure 7: M 1:5 roller rig of DLR with experi-
mental running gear for mechatronic guidance re-
search.

That way the wheel pair units may perform inde-
pendent yaw motions relative to the central frame.
The central frame has two degrees of freedom with
respect to the roller rig basis so it may move lat-
erally and yaw.

The running gear has been designed in order to
develop a new mechatronic guidance concept that
allows for active steering. Significant wear, noise
and weight reduction together with benefits that
result from the low-floor configuration are goals
that are on the agenda of the DLR internal project
NGT [17].

rollerSpeed
. .

k=2%pi ﬂ
] [

rollingLeftRear

rollers

rollingRightRear

g

i 1
Pllach | . [Polafih
runningGear L2
rollingLeftFront rollingRightFront

Figure 8: Diagram layer of the running gear model
on the roller rig.

3.2 Model Particularities

In parallel to the experimental environment a sim-
ulation model of the running gear on the test rig
has been established in Modelica. The diagram
layer of the Modelica model is visualized in Fig. 8
while an animation of the running gear operating
on the roller rig is presented in Fig. 9. Both en-

_ vironments together are supposed to support the

development of advanced control design concepts.
However the aim of this paper is rather the mod-
eling and the validation of the wheel-rail contact
that has been introduced in Sec. 2 and is instan-
tiated four times in Fig. 8. The contact model
named Polach uses two multibody frame connec-
tors to be linked to the center of the wheel and to
the center of the associated roller. Since the con-
tact model represents a loop-closing element, the
contact force in normal direction, implicitly fol-
lows from the closed loop condition. The tangen-
tial forces are evaluated as described in Sec. 2.5.
Fig. 10 shows the main part of the menu used to
parametrize the contact model. The wheel profile
here is not a standard one, but can here be repre-
sented by a true conical shape. The control of the
running gear is defined in such a way that only a
repective region of the wheel tread is in contact.
Therefore the parameter r_ wheel FrontView is
set to 1-10'2 or infinity, respectivley in Fig. 10.
The discussion in Sec. 2.1 is implicitly restricted
to the contact of wheels to prismatic rails, which is
different here due the geometry of the rollers with

Figure 9: Animation of the running gear model.
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Geometry
wheelRadius I wheelRadius | * m Wheel radius
rollerRadius I rollerRadius * m Roller radius
conusAngle | -1¥conusAngle * deg  cone angle .
%
r_Rail_SideView I Fm radius of the rail in side-view
r_Rail_FrontView I Fom radius of the rail in front-view
r_Wheel_SideView I Fom radius of the wheel in side-view Side View ‘.\__ Front View
\
r_Wheel_FrontView I Fm radius of the wheel in front-view
Physics
mue_0 I L) maximum friction coefficent at zero slip velocity
B I v osfm coeffident of expotential frdtion decrease
A I 4 ratio of frcition coefficents my0/my_infinity
kS I 4 <=1 friction reduction in slip area
k_A I 4 <=1 friction reduction (in adhesion area)
nue I LA Paissan number
E I r Pa Young's modulus

Figure 10: Parameter menu of the wheel-rail contact for conical wheel and curved roller profiles.

0.18 m radius. As soon as a wheel unit performs
a yawing motion the two wheels leave the apexes
of the associated rollers and slightly run downhill.
This behavior is considered in the model but has
been disregarded in Sec. 2, see [19, Sec. 2.2.2].

3.3 Results

A feature of the running gear are the force-torque
sensors, that are assembled at the bearing of each
wheel. Therefore the capability is given to com-
pare simulation and measurement results with par-
ticular respect to the wheel-rail forces.

Fig. 11 to Fig. 13 show wheel-rail forces at the
rear wheel on the right hand side. After the mea-
surements have been low-pass filtered using a cut-
off frequency of 20 Hz, the rotation frequencies
of the roller and wheels still show up clearly, so
that two narrow frequency bands of 0.2 Hz around
these frequencies have been filtered out addition-
ally. It is a current work field to eliminate or at
least reduce the influence of the related distur-
bance sources.

The control of the running gear is set up in such
a way that the running gear performs an artificial
so-called hunting motion with 0.5 Hz frequency
and a lateral amplitude of 8 mm. Whenever a
conventional wheel-set is laterally excited e.g. by
rail irregularities its dynamical response is a lateral

oscillation calling hunting. As along as the run-
ning velocity does not exceed a certain level, this
motion is asymptotically stable. This is a desired
dynamical property and a specific aspect of the
wheel-rail profile design mentioned in Sec. 1.1. In
addition hunting promotes wear not to be locally
concentrated but distributed over a larger region
of the wheel surface.

However independently rotating wheels do not
show this passive behavior so that it has to be in-
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Figure 11: Comparison of normal wheel-rail force,
vop = 6 m/s, 0.5 Hz hunting frequency.
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Figure 12: Comparison of longitudinal wheel-rail
force, vg = 6 m/s, 0.5 Hz hunting frequency.

troduced by feed-back control. The artificial hunt-
ing by control is the first proof a new mechatronic
running gear concept has to stand, i.e. the mecha-
tronic running gear has to perform at least as good
as the conventional wheel-set design, before addi-
tional benefits could be approached.

Due to the hunting the normal wheel-rail force
in Fig. 11 oscillates between 79 and 87 N. Mea-
surements and simulation results corrrepond very
good. The longitudinal forces in Fig. 12 show a
long-wave deviation but are nevertheless rather
close together. The values of the lateral forces in
Fig. 13 are very small, which is actually intended
by this specific running gear design. Therefore, the
measurement, tolerance of 0.25 N has to be consid-
ered when these results are assessed.

So far we are not able to measure the slip with
sufficient accuracy. Therefore, the validation of
the dependency of the forces on the slip is not pos-
sible today but will be tackled soon.

4 Conclusions and Outlook

From an intense literature review it has been con-
cluded that a rigid elliptical single point contact
with tangential force law according to Polach is
expected to provide a well balanced compromise
between accuracy and computational effort in or-
der to establish a Modelica model of the wheel-rail
contact.

Therefore the related theory has been summa-
rized in Sec. 2. One additional refinement namely
the quasi-elastic instead of the pure rigid contact

lateral force [N]
o)
()]

—Measurement
: ---Simulation
_25 i L i

6 8 10 12 14 16 18 20
time [s]

Figure 13: Comparison of lateral wheel-rail force,
vo = 6 m/s, 0.5 Hz hunting frequency.

model has been introduced to guarantee a suffi-
cient differentiability of the constraint equation.

This new Modelica wheel-rail contact is then ap-
plied to simulate the behavior of an experimental
running gear on the scaled roller rig of DLR. The
measured forces show a good agreement to the sim-
ulation results. A necessary advancement concerns
the availability of slip measurements. Full scale
applications with standard wheel-rail profiles will
be modeled in the near future.

The new DLR RailwayDynamics Library, to
which this wheel-rail contact model contributes a
first cornerstone, is mainly intended to support the
advanced observer and control design development
and to facilitate multidisciplinary simulation tasks
such as the interaction of running dynamics and
drive train.
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