
1D/2D Cellular Automata Modeling with Modelica

Victorino Sanz† Alfonso Urquia† Alberto Leva‡

† Dpto. Informática y Automática, ETSI Informática, UNED
Juan del Rosal, 16, 28040, Madrid, Spain

{vsanz,aurquia}@dia.uned.es
‡ Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano

Piazza Leonardo da Vinci 32, 20133 Milano, Italy
leva@elet.polimi.it

Abstract

Cellular Automata (CA) can be used to describe
dynamic phenomena dependent of the spatial
coordinates. This approach exhibits two main
advantages: CA models are conceptually simple and
can be simulated very efficiently. A new Modelica
library named CellularAutomataLib is presented. It
facilitates describing one- and two-dimensional CA in
Modelica, and interfacing these CA models with other
Modelica models. Simulation performance and large
model support have been highest priority in the design
of the library. To achieve these goals, the CA internal
description is programmed in C and it is consequently
hidden to the modeling environment, which is released
from the burden of causalizing and manipulating the
millions of equations that typically compose CA
models. The library architecture and use are discussed
in this manuscript. Two examples illustrate the
library use: heat diffusion on a chip and spread of
an epidemic disease. CellularAutomataLib is freely
available at http://www.euclides.dia.uned.es.

Keywords: Cellular Automata, Hybrid Models,
Modelica

1 Introduction

Cellular Automata (CA) are discrete and dynamic
models initially proposed by John Von Neumann for
the study of self-reproducing automata [1]. These
models are represented as a grid of identical volumes,
named cells, that can be in any finite number of
dimensions [2]. The state of each cell in the automata
is discrete, and it is updated at discrete time steps
during the simulation following a transition function
or rule. This rule constitutes a function of the current
state of the cell and the state of its neighbors, and

defines the state of the cell for the next time step [3].
The neighborhood of a cell is usually composed of a
selection of its surrounding cells, but not necessarily.
It can be defined in different ways, such as the Moore’s
neighborhood that includes all the surrounding cells;
the von Neumann’s neighborhood that includes the
cells adjoining the four faces of one cell; or the
extended von Neumann’s that also includes each cell
just beyond one of the four adjoining cells [4].

Formally, CA can be defined as a tuple [5]:

CA ∶ < T,X ,Ω,S,δ ,Y,λ >

where T is the time base (isomorphic with N); X is
the input set; Ω is the set of all input segments ω (an
input segment may be restricted to a domain T , ω ∶T →
X); S is the state that is the same for all cells because
the cellular space is homogeneous; δ ∶Ω×S→ S is the
global transition function used to update the state of
each cell (δ(ω,si) → δl(Ni), δl is the uniform local
transition function, si is the state of the i-th cell of the
grid and Ni is the set of states that correspond to the
neighborhood of the i-th cell, usually defined as a set
of offsets from i); Y is the output set; and λ ∶ S → Y
is the output function used to observe the state of the
automata.

The application of CA in the study of systems is
broad and diverse, mainly due to the simplicity of
describing these kind of models (i.e., by describing
the state of the cell, the initial state of the space and
the transition rule) and the computational efficiency
of their simulation. They have been used to model
systems in medicine [6], architecture [7], chemistry
[8], economics [9], biology [10], among many others
[11].

The feasibility for describing CA models using
the Modelica language was demonstrated by Fritzson
[12]. He described the Conway’s Game of Life model

DOI
10.3384/ECP14096489

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

489



in Modelica by representing the cellular space using a
matrix of integer numbers. The initial conditions are
set using a vector that contains the coordinates of the
initially active cells. At discrete times, generated using
a sample operator, the state of the automata is updated
by iterating the whole matrix using two for loops, and
using the transition function to update each individual
cell. The model uses the Moore’s neighborhood. In
this model, the description of the cellular space and the
evaluations of the transition function in each cell are
coupled, difficulting its reutilization to describe other
automata.

Another approach to describe CA models in
Modelica was performed by the authors [13]. The
CellularPDEVS package, distributed with the DESLib
library [14, 15], supports the description of CA using
the Parallel DEVS formalism [16, 17]. DESLib is
freely distributed under the Modelica License 2, and
can be downloaded from the Modelica Association
website. The cellular space is represented as coupled
Parallel DEVS models, and each cell is described as an
atomic Parallel DEVS model. CellularPDEVS allows
the user to focus on describing the behavior of the
cell and the characteristics of the cellular space. The
state of each cell corresponds to the state of the atomic
Parallel DEVS model and can be represented using
an arbitrarily complex Modelica data structure. The
transition rule corresponds to the internal transition
function of each cell, which can contain any Modelica
algorithm. This approach facilitates the description of
the model by making the simulation algorithm of the
automata transparent to the user.

CellularPDEVS also facilitates the combination of
CA models with other Modelica models. Inputs
and outputs to the cellular space can be described
using the external transition and output functions,
respectively. These functions (i.e., internal transition,
external transition and output) are used in the DEVS
formalism to define the behavior of models. However,
the performance and the scalability of this library
are not satisfactory. The reasons are twofold. First,
the size of CA models is typically in the order of
hundreds of thousands and millions of equations.
The translation of models with so large number of
equations (when even possible) is time consuming
and huge executable files are generated (see also
discussion in [18]). Second, long event chains are
executed to update the CA state. The complete model
is reevaluated after executing each event in the event
chain, which in most cases is unnecessary, degrading
the simulation performance significantly.

A new library, named CellularAutomataLib, for
describing CA models is presented in this manuscript.
The objective of this new library is to preserve
the characteristics of CellularPDEVS, in terms of
facility to describe the behavior of the model and the
characteristics of the space, and provide a solution
for its main drawbacks (i.e., simulation performance
and scalability). CellularAutomataLib is not based in
the Parallel DEVS formalism. The CA model (i.e.,
the state of the cell and the transition function) is
described as a C data structure (i.e., a C struct) and
a function. Its simulation algorithm is also directly
implemented into several C functions that are called
from Modelica by using the external function interface
provided by the language [19]. CA models defined
in this way are not manipulated by the Modelica tool
(Dymola in our case), which produces an smaller
simulation code and avoids the reevaluation of the
whole model after the treatment of an event in the
CA. The user can focus on describing the behavior
of the model and not the simulation algorithm.
Also, the simulation of CA models automatically
displays a graphical animation that is generated using
Gnuplot [20]. CellularAutomataLib provides interface
models that facilitate the connection of CA with
other Modelica models. These interface models use
user-defined external functions to translate the state of
the cell into a standard Modelica data type that can
be used in other models, and vice-versa. The library
has been developed using Dymola FD1 2013 on an
Intel Core i5 2.3GHz machine with 16GB of RAM and
running Linux 3.11 x86_64.

The structure of the manuscript is as follows. The
architecture of the library and its design principles are
detailed in Section 2. The procedure to develop new
CA models using the library is described in Section
3. The description of the interface models used to
combined CA with other Modelica models is given
in Section 4. Two case studies of 2D CA models are
presented in Section 5. Finally, some conclusions and
future work ideas are given in Section 6.

2 Architecture of the Library

The architecture of CellularAutomataLib is shown in
Fig. 1. The library is composed of the following
models and packages: License (description of
the license); User Guide (library documentation);
Path_gnuplot (path to Gnuplot binary, used to
generate the graphical animation); Input_Region
model (used as interface between CA models);

1D/2D Cellular Automata Modeling with Modelica

490 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096489



Figure 1: Architecture of CellularAutomataLib.

CAport connector (used to connect CA models with
other models); CA_1D package (models to describe
1D CA); Examples1D package (examples of 1D
CA); CA_2D package (models to describe 2D CA);
Examples2D package (examples of 2D CA).

The library has been implemented using C functions
that are called from Modelica functions using the
external function interface. The basic functions that
perform the simulation of the automata are included in
the file CellularAutomataLib.c, which should not
be modified by the user. These functions include the
creation and initialization of the space, the simulation
of a step or the reception of an external input, among
others. The behavior of the model has to be described
as external C code (i.e., model.c).

3 Development of New Models

A CA model in CellularAutomataLib is composed
of one or several cellular spaces, that represent the
1D or 2D grid of cells, and some models, named
interface models, used as interface between cellular
spaces or between cellular spaces and other models.
Cellular spaces and interface models include functions
that call external C functions. These external C
functions are used to describe the behavior of the

Figure 2: Relationship between Modelica and external
C code in CellularAutomataLib.

models. The relationship between the external code
and the Modelica code is summarized in Fig. 2. In
this section the development of new cellular spaces is
described. The use of the interface models is described
in Section 4.

3.1 Description of New Cellular Spaces

A cellular space in CellularAutomataLib is composed
of the cellular space model and some functions. The
cellular space model is a partial model that describes
the one- or two-dimensional space represented by the
automata. The parameters of the model are shown
in Table 1. The cellular space model includes three
replaceable functions: Create, that is used to create
the cellular space, allocate memory for the cells and
set them to the default state; Initial, that is used
to initialize the cells indicated using the init_cells
parameter and; Rule, that represents the transition
function and is used to update the state of the cells at
each simulation step.

The behavior of the cellular space is described by
redeclaring these functions with functions that call
external C functions (cf. Fig. 2). The description of
these external functions is detailed below.

At the beginning of the simulation, the cellular
space model creates the space using the Create
function, and initializes the cells included in
the init_cells parameter. After that, it
performs periodic simulation steps every Tstep

Session 3C: Novel Modelica Applications and Libraries

DOI
10.3384/ECP14096489

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

491



Table 1: Parameters of cellular space models.

Name Description

space_nrows defines the number of rows of the space (only used in 2D spaces).
space_ncols defines the number of columns of the space.
neighborhood defines the topology of the neighborhood. It contains a list of the relative positions of

the neighbors from the center cell.
n_inputs defines the number of inputs received from interface models connected to the

automata.
wrapped_borders defines the boundary conditions. In 1D spaces it is either 1 for wrapped or 0

for non-wrapped. In 2D spaces it can be 0 for non-wrapped, 1 for wrapped only
north-to-south, 2 for wrapped only east-to-west and 3 for wrapped in all directions.

Tstep defines the interval between two steps in the simulation of the automata.
Initial_step defines the time for performing the first simulation step.
plot_animation defines if the graphical animation is generated (value 1) or not (value 0).
plot_range defines the maximum value of the variable displayed in the animation. Thus, the

displayed variable can be in the [0, plot_range] interval.
display_delay defines a delay in the graphical animation that can be used to improve its visualization,

which otherwise could be too fast to be observed.
init_cells defines a list of coordinates of the cells that will be initialized at the beginning of the

simulation.
name defines a name for the automata that will be displayed in the graphical animation.

time, starting at time = Initial_step (i.e.,
sample(Initial_step,Tstep)).

3.2 Description of External C Functions

In order to facilitate the description of the behavior
of new cellular spaces, the library includes a template
file (named draft.c) that can be used to describe the
required external C functions.

Following the formal specification of the automata,
the user has to define the state variables that represent
the state of the cells (S) and the model behavior
(i.e., the transition function δ ) by reimplementing the
functions included in the draft.c file, into a new file
(e.g., model.c). The time base T is set using the
parameters TStep and Initial_step of the cellular
space model. The rest of the elements of the tuple
(X ,Ω,Y,λ ) are defined using the interface models.

As an example, the development of the Rule 30
model described by Wolfram [4] is presented. The
transition function for this model is shown in Fig. 3.

The draft.c file can be used as a template to
describe the behavior of the model. It has been
renamed as wolfram.c for this example. The state
of each cell is defined as an int value by modifying
the State data type in the template. The default value
for the cell state will be set using the DefaultState
function, and so it has to be modified to set the

Figure 3: State transitions for the Rule 30 model.

default state to 0. The state of initialized cells will
be set using the InitialState function, and so
it has to be modified to set the initial state to 1.
The transition function shown in Fig. 3 has to be
implemented by modifying the transition function
in the template. In order to automatically generate
the graphical animation, the Display function in the
template has to be modified to convert the state of the
cell (i.e., the State data type) into a double value.

The cellular space for the Rule30 model is
described in Modelica by extending the CellSpace1D
model from CellularAutomataLib. The Create,
Initial and Rule functions are redeclared using
functions that call the external C functions defined in
wolfram.c. The parameters for the Rule30 model
are: Space_ncols = 20, neighborhood = {-1,1},
wrapped_borders = 1, Tstep = 1, Initial_step
= 0, plot_animation = 1, plot_history = 1,
init_cells = 10, name = "Rule 30". The graphical

1D/2D Cellular Automata Modeling with Modelica

492 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096489



animation will be automatically generated using
Gnuplot if plot_animation is set to 1. In this model,
state 0 is displayed in black, and state 1 is displayed
in yellow. The first 10 steps of simulation for the Rule
30 model are shown in Fig. 4 (the number of step is
represented in the vertical axis).

Figure 4: Simulation of the first 10 steps for the Rule
30 model.

4 Interfacing with Other Models

CellularAutomataLib includes several interface
models that facilitate the combination of CA with
other Modelica models. The inputs of the CA model
(X ,Ω) are described using input and external input
region models. The outputs of the CA model (Y,λ )
are described using the output region model. Their
behavior and use are detailed below.

4.1 Input Region

Cellular spaces can be combined to increase
the modeling functionality of the library. This
communication can be performed using the
Input_Region model. The same model can be
used between 1D and 2D spaces.

The combination is performed by translating the
state of some cells from one space as inputs for
the other. The prototype of the transition function
in C includes a vector of the received inputs, in
order to allow the user to manage them. Each
Input_Region has associated an input identifier, set
using the parameter input_id, that can be used as
index for the vector of inputs of the transition function.

The Input_Region model has two interface ports:
FROM and TO. These interface ports are used to connect
to the involved cellular spaces. The state of the cell
[i, j]∣i ∈ [RstartFrom ∶ RendFrom], j ∈ [CstartFrom ∶
CendFrom], in the FROM space, is translated using

the SetInput function into an input for the cell
[m,n]∣m ∈ [RstartTo,RstartTo + (RendFrom −
RstartFrom)],n ∈ [CstartTo,CstartTo +
(CendFrom − CstartFrom)] in the TO space.
RstartFrom, RendFrom, CstartFrom, CendFrom,
RstartTo and CstartTo are parameters of the model.
In 1D spaces, only the column parameters are used
(i.e., CstartFrom, CendFrom and CstartTo). An
additional parameter, named column_1D_2D, allows
to use a 1D region as a column, instead of a row, of
inputs for a 2D space. The communication is started
at time = comm_start and is performed every
comm_rate time.

The function void SetInput(int Fspace, int
Frow, int Fcol, int Tspace, int Trow, int
Tcol, int input_id) from the draft.c file can be
used to redeclare the SetInput of this model.

4.2 External Input Region

Similarly to the Input_Region model, the model
ExtInputRegion can be used to set an input to a
region of cells in the automata. In this case, the input is
generated using an external signal instead of the state
of the cells of other automata.

The model receives an external Real input signal
through port u, which is used as input for a region
of cells in the automata connected to port TO. As in
the previous interface model, a 2D region is defined
by the positions between Rstart and Rend (for the
rows) and Cstart and Cend (for the columns). In
1D regions only the parameters referring to columns
are considered. The input is assigned to the position
input_id of the vector of inputs which is available for
the user in the transition function. The external signal
can be observed in the following ways (defined by the
parameter Input_type), in order to be converted into
an input:

• Quantizer: the input is set every time the value of
the signal changes in a defined value or quantum.

• Cross_UP: the input is set every time the value
of the signal crosses a defined threshold in the
upwards direction.

• Cross_DOWN: the input is set every time the
value of the signal crosses a defined threshold in
the downwards direction.

• Cross_ANY: the input is set every time the value
of the signal crosses a defined threshold in any
direction.

Session 3C: Novel Modelica Applications and Libraries

DOI
10.3384/ECP14096489

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

493



Figure 5: Example of behavior of external input region, external init region and output region models.

• Sample: the input is set periodically using the
sample operator.

The signal is translated into an input using the
function ExtInput, that can be redeclared using the
void ExtInput(int space,int row, int col,
double value, int input_id) function included
in draft.c.

An example of external input is shown in Fig. 5. The
ExtInputRegion model, connected to the CA CASpace,
is used to set the state of the cells in the fifth row of
the cellular space to the value of its input const (i.e.,
5). The values of the states of the cells are graphically
represented at the right of the figure.

4.3 External Init Region

This model can be used to set the initial state of a
region of cells in the space using the value of an
external signal. The model has an input port, named u,
where a Real signal is received, and a port named TO
that connects to the CA. This signal is translated, using
the ExtInit function, into a cell state that will be
used to initialize the cells in the region of the automata
connected to port TO.

The 2D region is defined by the positions between
Rstart and Rend (for the rows) and Cstart and
Cend (for the columns). Only the column parameters
are considered for 1D regions. The ExtInit function
can be redeclared using the void ExtInit(int
space,int row, int col, double value)
function included in draft.c.

An example of external init is shown in Fig. 5. The
extInitRegion model is used to initialize the state of the

cells in the rows 1 to 4 (and columns 1 to 5) with the
value of its input const1 (e.g., 0).

4.4 Output Region

The OutputRegion model can be used to observe the
state of the cells in a region of the automata connected
to port FROM. The state is translated into an output Real
signal that can be used by other Modelica models. As
in the previous interface models, a 2D region is defined
by the positions between Rstart and Rend (for the
rows) and Cstart and Cend (for the columns). In 1D
regions only the parameters referring to columns are
considered.

The model contains two output Real ports, y
and yM[Rend-Rstart+1,Cend-Cstart+1] (being
yM[Cend-Cstart+1] for the 1D case). Depending on
the value of the parameter Output_type, the state is
observed in different ways:

1. (AVERAGE): the value of y is calculated as
the average value of the states of the cells in
the [Rstart ∶ Rend,Cstart ∶ Cend] interval, or
[Cstart ∶ Cend] for 1D.

2. (MAX): the value of y is calculated as the
maximum value of the states of the cells in
the [Rstart ∶ Rend,Cstart ∶ Cend] interval, or
[Cstart ∶ Cend] for 1D.

3. (MIN): the value of y is calculated as the
minimum value of the states of the cells in
the [Rstart ∶ Rend,Cstart ∶ Cend] interval, or
[Cstart ∶ Cend] for 1D.

1D/2D Cellular Automata Modeling with Modelica

494 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096489



4. (MATRIX): the value of the state of the i, j-th
cell in the space is assigned to yM[m,n] (where
m = 1 ∶ (Rend−Rstart+ 1) and n = 1 ∶ (Cend−
Cstart+1)). In 1D, the i-th cell is assigned to
yM[n] (where n = 1 ∶ (Cend−Cstart+1))

The value of the state is translated into a Real value
using the ExtOutput function, that can be redeclared
using the double Output(int space, int row,
int col) function included in draft.c.

An example of output region is shown in Fig. 5. The
outputRegion model is used to calculate the maximum
value (i.e., Output_type = MAX) among the states of
the cells in the first column of the space. In the case
shown in the figure, the output port y of outputRegion
is set to 5.

5 Case Studies

CellularAutomataLib includes several examples of 1D
and 2D models, whose purpose is to demonstrate
the functionality of the library and to facilitate the
development of new models. The modeler can use
these examples as a base for constructing new CA.
Two of these examples are described in this section: a
model of heat transfer on a chip and a SIR (Susceptible
Infected Removed) epidemic spread model.

5.1 Heat Transfer on a Chip

The model describes the flow of the heat generated
in a chip by the execution of software instructions.
Two heat transfer mechanisms are considered: heat
diffusion in the chip surface and convective heat flow
from the chip surface to the air. The model contains
two bi-dimensional CA: one describes the chip and
the other describes the air. The software execution is
modeled using power sources located at certain points
of the chip surface. These points correspond to the
position of the circuit components (ALU, memory,
etc.) that dissipate more heat.

The structure of the CA model is shown in Fig. 6.
This model combines two cellular spaces, one for the
chip (named Chip) and another for the air (named
Air), with other Modelica models used to represent
the sources of power (named T+3S+N, Pg1 and Pg2).
Two external input region models (named Pext1 and
Pext2) are used to combine the external sources of
power with the Chip cellular space. Two input regions
are used to represent the transfer of heat between
chip and air (named Chip2Air), and vice-versa (named
Air2Chip). An external init region (named InitTemp) is

Figure 6: CA model of heat transfer on a chip.

Table 2: Parameters of the chip model.

Name Value Unit Description

gamma 100 W
m2.K Heat transfer coefficient

cp 710 J
kg.K Specific heat capacity

ro 2330 kg
m3 Average density

rows 10 - Number of rows
cols 10 - Number of columns

length 0.005 m Layer length
width 0.005 m Layer width

thickness 0.0001 m Layer thickness
k 149 W

m.K Thermal conductivity

used to initialize the cells of Chip at 20ºC, given by a
constant source from the Modelica Standard Library.
Finally, an output region model (named chipTEMP) is
used to observe the evolution of temperatures in the
chip.

The model has been implemented into a C file,
named chip.c. The equations that describe the
heat transfer have been implemented in the transition
function of Chip. The Air2Chip model sets the
temperature of the Air as an input for Chip, which is
used to calculate the convection of heat from the chip
to the air. The Pext1 and Pext2 set two inputs for Chip
that are used as input heat flows in the equations.

The transition function calculates the evolution of
temperatures in the chip using two alternatives: a
forward Euler and a leap-frog integration algorithms.
These are explicit integration algorithms that are easily

Session 3C: Novel Modelica Applications and Libraries

DOI
10.3384/ECP14096489

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

495



(a) Euler integrator

(b) Leap-frog integrator

Figure 7: Simulation results for cell [1,3] and error
between Modelica and CA models: a) using Euler
integration; and b) using Leap-frog integration.

included in the transition function of the CA. At each
step of the simulation the transition function calculates
an integration step and updates the values of the
temperatures. The interval between steps using the
forward Euler has to be 0.0001s in order to ensure
stability. That interval can be increased to 0.001s using
the leap-frog algorithm.

An analogous model has been developed using
Modelica. In this model, the space has been
discretized using finite volumes. In order to perform a
comparison between the Modelica and the CA models,
each volume will be represented by a cell in the CA.

Both models, Modelica and CA, have been
simulated for 10s using the parameters shown in
Table 2. The simulation results at the cell [1,3] and
the error between the Modelica and CA approaches

Figure 8: Capture of the graphical animation for the
chip CA model.

Table 3: CPU time (in seconds) for integration of
models during 10s of simulated time.

Model
Grid Side Size

10 50 100 200

Modelica (DASSL) 0.02 15.3 506 error
Modelica (EULER) 1.26 1225 5046 -

CA (EULER) 22 1670 6720 -
CA (LEAP-FROG) 2 173 711 2790

Table 4: Number of equations for the Chip model.

Model
Grid Side Size

10 50 100 200

Modelica 1.2e3 2.7e4 1.1e5 4.4e5

CA 1.7e3 2.5e3 1e4 4e4

CA without
chipTEMP

70 70 70 70

are shown in Fig. 7. A capture of the graphical
animation is shown in Fig. 8. The evolution of the
simulation time with respect to the size of the grid
is shown in Table 3. The simulation using EULER
integration for the 200x200 grid was not performed
and thus it does not appear in the table. The number
of equations in the Modelica and CA models are
shown in Table 4. If the chipTEMP output region
model is removed from the CA model the number
of equations is 70, independently of the grid size.
The Modelica model rapidly reaches the maximum
number of equations that can be efficiently handled
by Modelica/Dymola, while the number of equations
in the CA model remains lower. Note that Dymola

1D/2D Cellular Automata Modeling with Modelica

496 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096489



fails, due to an unknown internal error, to compile the
Modelica model in a grid of 200x200 cells.

5.2 Epidemic Spread

The dynamics of epidemic spread are modeled in
this example. This model was proposed in [21]. It
is a SIR model where susceptible (S), infected (I)
and recovered (R) individuals are considered. The
evolution of the number of these individuals is defined
by Eqs. (1), (2) and (3).

It
i j = (1−ε) ⋅ It−1

i j +v ⋅St−1
i j ⋅ It−1

i j +St−1
i j ⋅

∑
(α,β)∈V

Ni+α, j+β

Ni j
⋅µ i, j

αβ ⋅ I
t−1
i+α, j+β (1)

St
i j = St−1

i j −v ⋅St−1
i j ⋅ It−1

i j −St−1
i j ⋅

∑
(α,β)∈V

Ni+α, j+β

Ni j
⋅µ i, j

αβ ⋅ I
t−1
i+α, j+β (2)

Rt
i j = Rt−1

i j +ε ⋅ It−1
i j (3)

where V is the neighborhood of the (i, j) cell, and
µ i, j

αβ = c(i, j)αβ ⋅m
(i, j)
αβ ⋅ v, where c(i, j)αβ and m(i, j)αβ are the

connection factor and the movement factor between
the (i, j) cell and its neighbor cell (i + α, j + β),
and v ∈ [0,1) is the virulence of the epidemic. The
parameter ε defines the portion of infected individuals
that recover from the disease at each step.

This model has been programmed in a C file, named
epidemics.c. The size of the cellular space has been
set to 50x50 in order to validate its results with the
ones presented in [21]. Only the cell in the center of
the space (i.e., position [25,25]) is initialized at the
beginning. The parameters are set using the values:
ε = 0.4, v = 0.6, c = 1 and m = 0.5. The Moore’s
neighborhood is used. The CA model includes the
cellular space model and three output region models
(see Fig. 9), used to sum the values of the state
variables (S, I and R) of the whole CA. Each output
region model redefines the ExtOutput function using
a different function from epidemics.c, in order to
observe the desired variable. The simulation results
after 50 steps are shown in Fig. 10.

In order to demonstrate the simulation of a larger
space, this model has been simulated with an space
size of 500x500. This generates around 750,000
equations, due to the matrices defined in the output
region models. These matrices are managed by the
Modelica simulation algorithm. Dymola generates a
C file of 140MB which is difficult to compile and
simulate. Because of this the output region models

Figure 9: CA model of SIR epidemics spread.

Figure 10: Evolution of the sum of the state variables
(S,I and R) of the whole CA after 50 steps.

Figure 11: Capture of graphical animation at t = 100
for the epidemic spread model using a 500x500 grid.

are removed from the CA model before performing the
simulation. The capture of the graphical animation at
the final step (t = 100) is shown in Fig. 11.

Session 3C: Novel Modelica Applications and Libraries

DOI
10.3384/ECP14096489

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

497



6 Conclusions

A new Modelica library has been developed to
facilitate the description of CA models. The
simulation algorithms are transparent to the user, who
has to focus on the description of the behavior of
the model. The behavior of the models is described
using external C functions. The use of external
functions improves the performance and scalability of
the simulations. The functionality of the library has
been demonstrated by means of two case studies.

Some future work ideas are: to support the
description of 3D models; to improve the generation
of the graphical animation using graphical libraries
instead of Gnuplot; to develop a graphical interface to
define the initial conditions of the CA model; and to
automatically parallelize the simulation of the CA in
order to improve the performance.

7 Acknowledgments

This work has been supported by UNED, under
2013-026-UNED-PROY grant.

References
[1] von Neumann J. Theory of self-reproducing automata.

Univ. of Illinois Press, Urbana and London, 1966.

[2] Ilachinski A. Cellular Automata: A Discrete
Universe. World Scientific, Singapore, 2001.

[3] Schiff J.L. Cellular Automata: A Discrete View of the
World. Wiley-Interscience, New York, USA, 2008.

[4] Wolfram S. A New Kind of Science. Wolfram Media
Inc., Champain, IL, USA, 2002.

[5] Vangheluwe H.L.M., Vansteenkiste G.C. The cellular
automata formalism and its relationship to DEVS. In:
In 14th European Simulation Multi-conference (ESM.

[6] Hötzendorfer H., Estelberger W., Breitenecker
F., Wassertheurer S. Three-dimensional cellular
automaton simulation of tumour growth in
inhomogeneus oxygen environment. Mathematical
and Computer Modelling of Dynamical Systems,
15:pp. 177–189, 2009.

[7] O’Sullivan D., Torrens P.M. Cellular Models of
Urban Systems. In: S. Bandini, T. Worsch,
eds., Theoretical and Practical Issues on Cellular
Automata. Springer-Verlag, London, 2000.

[8] Kier L.B., Seybold P.G., Cheng C.K. Modeling
Chemical Systems using Cellular Automata. Springer,
Dordrecht, The Netherlands, 2005.

[9] Rouhaud J.F. Cellular automata and consumer
behaviour. European Journal of Economic and Social
Systems, 14:pp. 37–52, 2000.

[10] Kroc J., Sloot P.M., Hoekstra A.G., eds.
Simulating Complex Systems by Cellular Automata.
Springer-Verlag, Berlin, 2010.

[11] Ganguly N., Sikdar B.K., Deutsch A., Canright G.,
Chaudhuri P.P. A Survey on Cellular Automata. Tech.
rep., 2003.

[12] Fritzson P. Principles of Object-Oriented Modeling
and Simulation with Modelica 2.1. Wiley-IEEE
Computer Society Pr, 2003.

[13] Sanz V., Urquia A. An Approach to Cellular
Automata Modeling in Modelica. In: Proceedings
of the 5th International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools, pp.
121–130. Nottingham, UK, 2013.

[14] Sanz V., Urquia A., Cellier F.E., Dormido S. System
Modeling Using the Parallel DEVS Formalism and
the Modelica language. Simulation Modeling Practice
and Theory, 18(7):pp. 998–1018, 2010.

[15] Sanz V., Urquia A., Dormido S. Parallel
DEVS and Process-Oriented Modeling in Modelica.
In: Proceedings of the 7th International Modelica
Conference, pp. 96–107. Como, Italy, 2009.

[16] Zeigler B.P., Kim T.G., Prähofer H. Theory of
Modeling and Simulation. Academic Press, Inc.,
Orlando, FL, USA, 2000.

[17] Sanz V. Hybrid System Modeling Using the Parallel
DEVS Formalism and the Modelica Language. Ph.D.
thesis, ETSI Informática, UNED, Madrid, Spain,
2010.

[18] Zimmer D. Module-Preserving Compilation of
Modelica Models. In: Proceedings of the 7th

International Modelica Conference, pp. 880–889.
Como, Italy, 2009.

[19] Modelica Association. Modelica - An Unified
Object-Oriented Language for Physical Systems
Modeling. Language Specification version 3.3, 2013.
URL http://www.modelica.org/documents.

[20] Williams T., Kelley C. Gnuplot 4.6: An Interactive
Plotting Program, 2012. URL http://www.
gnuplot.info.

[21] White S.H., del Rey A.M., Sanchez G.R. Modeling
epidemics using cellular automata. Applied
Mathematics and Computation, 186(2007):pp.
193–202, 2007.

1D/2D Cellular Automata Modeling with Modelica

498 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096489


