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Abstract

Nonlinear inverse dynamic models can be utilized in
various parts of advanced model-based control sys-
tem design: reference trajectory optimization, feed-
forward control and feedback linearization [35]. In
this paper, a new synthesis approach for nonlinear in-
verse dynamic models of satellites with flexible struc-
tures is presented. For satellite configurations with un-
stable zero dynamics, a stable inverse model approx-
imation is proposed which has been successfully ap-
plied to robots with flexible bodies.

This inverse modeling approach is part of the newly
developed DLR Space Systems Library for object-
oriented modeling and simulation of satellites and
launchers in a detailed space environment. For satel-
lites with flexible structures, the library provides mod-
els for normal simulation mode and the necessary tools
to directly generate approximate inverse models.

In this paper, trajectory optimization is shown to be
an important use case for inverse dynamic models. By
inversion based reformulation of the trajectory opti-
mization problem, the optimal reference motion of the
control system can be determined in a reliable and ef-
ficient way.

Keywords: satellite modeling; nonlinear inverse
model; trajectory optimization; flexible structure

1 Introduction

The Space Systems Library (SSL) was built to de-
velop advanced control systems for satellites / space-
craft with flexible structures. In particular, one goal
of this library is to generate nonlinear inverse models
for the controller. The library contains state-of-the-
art Low Earth Orbit (LEO) space environment models
and components. It was implemented in the Modelica
modeling language [23].

The theory of satellite dynamics is well understood
and many important aspects of spacecraft modeling

are described in publications such as [24]. A wide
range of satellite simulators exist [3, 2, 11, 5, 36] that
are able to accurately simulate a satellite in orbit.

There also exist simulators based on the Model-
ica modeling language. The authors made use of the
advantages of using the Modelica language for the
implementation and the inversion of rigid satellites
[29]. In addition, several related publications such
as [30, 20, 19] describe the simulation of satellites in
detail. Satellites with flexible appendages were con-
sidered in [33]. Many important aspects of spacecraft
modeling are already covered in these publications and
promising results were reported by these authors.

The Space Systems Library was developed to imple-
ment nonlinear inverse models of satellites with flexi-
ble structures, such as solar panels, that cannot be eas-
ily implemented within existing simulators. Having
direct access to all component equations from the SSL
allows the successful implementation of algorithms
from recent results obtained in the field of robotics re-
garding the inversion of flexible multi-body systems
and trajectory optimization based on inverse models
[32, 31].

The new DLR internal library builds upon the Mod-
elica Standard Library [23], and especially the Model-
ica MultiBody Library [25], as well as the DLR Flexi-
bleBodies Library [12], DLR Visualization Library [1]
and the DLR Optimization Library [27]. The SSL
combines their capabilities to achieve a wide range
of possible applications, ranging from visualization
of space missions to high accuracy simulations, op-
timizations and development of control systems for
satellites with flexible structures.

The objective of this paper, apart from introducing
the SSL, is to demonstrate its capabilities by model-
ing a near Earth satellite based on the TET-1 prototype
[8], which is part of the FireBird mission – a mission
of the German Aerospace Center (DLR) for fire re-
connaissance [4, 16]. The modeling of the satellite is
described in section 3.
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The satellite is modeled with flexible solar panels1.
From the nonlinear (direct) satellite model, an inverse
model is derived (sec. 4). This inverse model is used
to calculate optimal trajectories for a reorientation ma-
neuver of the satellite using the reaction wheels under
constraints (sec. 5) and can also be used as a feed-
forward controller.

2 The Space Systems Library

The SSL enables object-oriented, acausal, and
equation-based modeling of space systems dynamics
and its corresponding environments. This in turn al-
lows controller design and verification, as well as de-
velopment of path planning and other algorithms.

The Space Systems world model The default world
model of the Modelica MultiBody Library [25] is ex-
changed by a new world model which is compatible
with the default world model. It offers additional
options and methods for space environment simula-
tions. The world model handles the global simulation
time that is used to calculate planet positions and var-
ious transformations. The initial time can be given in
calendar- or Julian date format. The latter is also im-
plemented internally as time format. The basis coor-
dinate system is chosen to be the Earth Centered Iner-
tial (ECI) coordinate system, which is suitable for near
earth satellite simulations. The world model offers a
connector and transformation for the Earth Centered
Earth Fixed (ECEF) coordinate system, which is use-
ful for the simulation of objects on earth, like emitter
stations. The transformation from ECI to ECEF co-
ordinate system is computed as described in [24, 15].
This calculation also considers the difference in sec-
onds between Universal and Universal Coordinated
Time (leap seconds, tUT 1−UTC) that has to be given as
an initial value and can be taken from tabular data [37].

Gravity acceleration computation The gravity ac-
celeration g0 ∈ R3 plays a very important role for the
simulation of satellites. Hence, multiple gravity mod-
els of different complexity were implemented. The
most precise model implemented is the EGM96 grav-
ity model [18]. A computational efficient approxima-
tion of this model was implemented, which uses terms
of up to the second degree of the zonal harmonic co-
efficients of the gravitational potential. In addition,

1The term "flexible satellite" will be used hereafter as a short-
hand notation.

moon and sun gravities have been included, consid-
ering them as important perturbation factors. These
are modeled as point gravity [24]. Although newer,
more advanced gravity models exist, the accuracy of
the chosen models is sufficient for our multi-body ap-
proach that focuses on short term simulations.

Gravity gradient torque The gravity gradient
torque is modeled as a torque τa that acts on the frame
a (position r0,a ∈ R3 and orientation Ra ∈ R3×3. The
index a is used to describe a generic frame, which is
instantiated for every object) to which it is connected.
This frame should be connected to the center of mass
of the body in consideration. The torque is caused by
the mass distribution of the body in consideration, and
depends on the inertia tensor I ∈ R3×3 as follows.

τa =

(
Ra ·g0(r0,a, tJ)

3
‖r0,a‖

)
×
(

I ·Ra
−r0,a

‖r0,a‖

)
(1)

In eq. (1), the gravity acceleration vector g0 ∈ R3 is a
function of the position r0,a and the Julian date tJ (to
compute planet positions). See [17] for more details.

Solar radiation pressure The effect of the solar ra-
diation pressure p� is modeled as a force element
fsp ∈ R3 that acts on the element to which it is con-
nected. Shadows of the moon and sun are considered
using a cylindrical shadow model. The models are im-
plemented as proposed in [24].

Atmospheric drag The atmospheric drag is caused
by friction with the atmosphere depending on the
height of the satellite above the Earth. Like the ra-
diation pressure, it is modeled as a force and torque
element acting on the attached body which should be
located at the center of pressure.

The density ρ(λ ,φ ,h, tJ) of the atmosphere is com-
puted using the NRLMSISE-00 atmospheric density
model [28]. The density ρ depends on the longitude
λ , latitude φ and height above earth h, that can be
computed from r0,a, as well as the actual Julian date
tJ . The drag force fa ∈ R3 and torque τa ∈ R3 can be
computed using eq. (2).

vrel = ṙ0,a−ω⊕× r0,a (2a)

fa =−Ra
1
2

cdAadρ‖vrel‖vrel (2b)

assuming ‖vrel‖ 6= 0 (otherwise τa = 0):

τa = Ra
1
2

cdAadρ‖vrel‖2
(

vrel

‖vrel‖
× (Rascp)

)
(2c)
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In eq. (2), ω⊕ ∈ R3 is the earth angular velocity, cd
is the drag coefficient, Aad is the affected area (which
can depend on Ra) and scp ∈ R3 is the vector from the
center of pressure to the center of mass, all resolved in
the attached frame a.

Geomagnetic field The geomagnetic field can be
computed at a desired frame (position r0,a) by a ge-
omagnetic field component, using the US/UK World
Magnetic Model [22]. The model provides a magnetic
field vector Bm(λ ,φ ,h, tJ) ∈ R3 that depends on the
longitude λ , latitude φ and height above earth h, which
can be computed from r0,a and the Julian date tJ .

Variable mass systems The effects of variable mass
systems are very important for the modeling of launch-
ers but their consideration can also be necessary for
satellites that use gas thrusters, if high precision for
the simulation is required. If mass flow ṁ∈R is small,
variable mass is usually neglected. Effects of thrusters
and jets together with their tanks can be modeled as
variable mass systems.

For the SSL, variable mass systems were imple-
mented based on [9, 10] using the concept of a vari-
able mass cylinder with different models of fuel burn-
ing. The cylinder represents the fuel or gas tank that is
directly attached to the nozzle (of the thruster or jet).

3 The satellite model with flexible
structures

The satellite model consists of flexible structures that
are modeled as modal bodies as described in [12].
They are based on the definition of Standard Input
Data (SID) as defined in [38] as well as rigid bodies
and powertrain elements. The equations of motion of
each flexible part i are given in eq. (3). The ˜(.) oper-
ator is used to generate a skew-symmetric matrix of a
vector.



miI3 sym.
mid̃CM,i(qi) Θi(qi)

Ct,i(qi) Cr,i(qi) Me,i






aR,i

ω̇R,i

q̈i


 (3)

+




2ω̃R,iCT
t,i(qi)q̇i + ω̃R,iω̃R,idCM,i(qi)

Gr,i(q̇i)ω̃R,i + ω̃R,iΘi(qi)ωR,i

Ge,i(q̇i)ω̃R,i + Oe,i(qi)Ω(ωR,i)




+




0
0

Ke,iqi + De,iq̇i


=




ht,i

hr,i

he,i




The meaning of the symbols in eq. (3) are listed in
table 1. The file of a flexible body (SID) can be ob-

Table 1: SID abbreviations
aR,ωR ∈ R3 acceleration of the ref. frame
q ∈ Rne modal amplitudes
m ∈ R body mass
I3 ∈ R3×3 identity matrix
dCM(q) ∈ R3 position of center of mass
Θ(q) ∈ R3×3 inertia tensor
Ct(q) ∈ Rne×3 inertia coupling mat. (trans.)
Cr(q) ∈ Rne×3 inertia coupling mat. (rot.)
kω(ωR,q, q̇) ∈ R3+ne gyro. and centrifugal forces
Ω(ωR) ∈ R6 components of ωR

Ge(q̇) ∈ Rne×3 gyroscopic matrix (modal)
Gr(q̇) ∈ Rne×3 gyroscopic matrix (rot.)
Oe(q) ∈ Rne×6 centrifugal matrix (modal)
h(q) ∈ R3+ne external forces
Me ∈ Rne×ne modal mass matrix
Ke ∈ Rne×ne modal stiffness matrix
De ∈ Rne×ne modal damping matrix

tained from an FEM-analysis (e. g. using ANSYSr

or ABAQUSr in combination with SIMPACKr) di-
rectly from CAD and material data of the component.
In the modal reduction, ne modes are selected and the
required data to calculate eq. (3) is stored in the SID
file. The flexible bodies can be combined with other
flexible and rigid bodies to model the structural dy-
namics of the satellite.

The reaction wheels are driven by a motor together
with a powertrain including friction. Furthermore,
most powertrains used in today’s satellites are very
stiff. Future satellite designs may incorporate more
lightweight constructions with elastic effects in the
powertrains, in combination with more powerful and
agile motors, as in robotics today. For this reason non-
linear elasticity between the motor and the reaction
wheel disk can be taken into account. The elasticity
can result from the material of the drive shaft or due
to the construction of the coupling. By combining one
dimensional models of the powertrain with three di-
mensional inertia and mass elements, computational
efficient models can be designed by using mounting
and rotor elements as described in [34]. To model a
powertrain in a way which can also be used to gener-
ate inverse models is described in [32, 31]. It consists
of approximate friction and nonlinear elasticity mod-
els that have strictly monotonic characteristics.

Using the components of the library, a detailed me-
chanical satellite model can be built. The benchmark
model used here is a satellite model which is based
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Figure 1: Animation of the satellite with the SSL.

on the TET-1 prototype [8], with slightly exagger-
ated elasticities, in order to demonstrate the capabil-
ities of the library and future lightweight satellite de-
signs. Three solar panel elements have been modeled
as modal bodies. These have been generated from
CAD data, a subsequent FEM-analysis, followed by
a modal reduction and finally obtaining an SID model.
The main body of the satellite is modeled as a rigid
body because it is considerably less flexible than the
solar panels. Fig. 1 shows an animation of the satel-
lite generated with the SSL. Three reaction wheels
mounted at the main satellite body are modeled as
rigid bodies representing flywheels. They are con-
nected to one-dimensional (rotational) flexible pow-
ertrains with friction and first order motor dynamics.
The gyroscopic torques of the one-dimensional pow-
ertrain elements are considered in the model by using
the mounted rotor elements as described in [34]. The
gravity g0 which is acting on the rigid and flexible bod-
ies is calculated using the gravity model, which is de-
fined by the (global) satellite world model. Additional
force and torque elements are connected to the satel-
lite to account for the solar radiation pressure and at-
mospheric drag as well as the gravity gradient torque,
described in sec. 2.

4 Inversion of a structural elastic
satellite model

On the top level, a satellite dynamics model has the
structure as shown in the top half of fig. 2.

The motor currents Im are used to drive the reaction
wheels of the satellite, from which in turn the rota-
tion of the satellite is determined by the solution of a
differential-algebraic equation system. In particular,
the angular velocity ωACS of the central satellite frame

Figure 2: Top level view of direct and inverse satellite
model.

Figure 3: Two degree of freedom control of the satel-
lite motors. With feed-forward controller Σ f f , feed-
back controller Σ f b and satellite Σ.

is computed, it will be referred to as the ACS-frame
(Attitude Control System). This computation is a stan-
dard task of satellite simulators.

For advanced control systems, the inverse of this
model is needed, as shown in the lower half of
fig. 2. The previously given motor currents Im shall
now be computed from the desired angular velocity
ωD,ACS. The nonlinear inverse model is based on
the satellite model described in section 3. The ba-
sis for the inversion of a nonlinear (Modelica) model
are index-reduction techniques using the algorithm of
Pantelides. The index reduction method [26, 21] al-
lows to choose which equations have to be used to
generate a DAE of (at most) index one. All Modelica
simulators support this or similar algorithms and au-
tomatically perform the inversion. However, both the
generation of the inverse model, as well as the numeri-
cal computation may fail, if the underlying model does
not fulfill certain requirements. Especially, the system
must be smoothly continuously differentiable up to the
necessary order of differentiation that is determined by
the algorithm of Pantelides.

Such a nonlinear inverse model can be, for example,
used as feed-forward controller Σ f f for the inner con-
trol loop, see fig. 3. An additional outer feedback con-
trol loop based on the satellites star tracker would be
needed to achieve stationary accuracy of the satellite.
For a rigid satellite with rigid powertrains without mo-
tor dynamics ωD,ACS and the equations of motion have
to be continuous differentiable at least once so that the
equations for the inverse model can be solved via the
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ACS-Kinematics

ωD,ACS

ACS-Frame Inversion ACS-Frame Inversion
(I) (II)

Satellite (rigid)
(I)

Satellite (flexible)
(II)

q̂

Environment
(I)

Environment
(II)

World

x,y,z

Reaction

with

wheels

flexible
powertrains

x,y,z

Reaction

with

wheels

flexible
powertrains

(I) (II)

Figure 4: Setup of the approximate inverse satellite
model with flexible solar panels and powertrains. The
global world model provides the gravity model and
simulation time. The environment causes forces and
torques on the satellite as described in section 2. Be-
cause the environment effects can depend on the states
of the satellite, they have to be included for both par-
allel models of the satellite (I & II).

algorithm of Pantelides. For a satellite with flexible
structures and flexible powertrains and first order mo-
tor dynamics, as described in section 3, ωD,ACS as well
as the equations of motion have to be differentiable at
least three times. In practice, this should be increased
by at least one order to avoid non-differentiable motor
currents. If these higher order derivatives of ωD,ACS

are not available, a low-pass filter can be used to ap-
proximately compute ω∗D,ACS and its derivatives (see
[35, 32, 31]). This is a reason why exact sticking
friction cannot be used as part of the inverse model
and an approximation has to be used. For compo-
nents that use non differentiable (e. g. tabular) data like
the NRLMSISE-00 atmospheric density model [28]
the derivatives have to be either approximated or ne-
glected. This can be achieved in Modelica by using
user-defined derivative-functions instead of automatic
symbolic differentiation.

It is also necessary that the inverse model is sta-
ble. For a linear model this means that the model to
be inverted has no (transmission-) zeros in the right
half of the complex plane. For the nonlinear model
this means that the zero dynamics has to be stable.
For highly nonlinear models it is usually very diffi-
cult or even impossible to calculate the zero dynam-

ics analytically (e. g. using methods described in [13]
that involve solving partial differential equations). Of-
ten, the only practical way is to calculate linearizations
of the nonlinear model to verify the stability of the
(transmission-) zeros.

One typical reason for unstable (transmission-) ze-
ros for systems with flexible structures is the non-
collocation of inputs (actuators) and outputs (sensors)
of the system. For structural elastic robots this can
be the case if motor torques are chosen as output and
the robot tip position is chosen as input of an inverse
model [32]. The same problem is also possible for
flexible satellites, e. g. if the main satellite body atti-
tude should be controlled by actuators that are posi-
tioned on a flexible mounting. In general, in order to
achieve a stable inverse model of a flexible satellite,
approximations must be used, as explained in sec. 4.1,
because the exact inverse model is unstable. A first
step for the construction of the satellite’s inverse model
is the definition of a base ACS-frame. The desired an-
gular velocity ωD,ACS of the satellite will be given with
respect to this frame. A good choice for the ACS-
frame is either the center of mass of the satellite, or
the tip-position of an important on-board instrument
of the satellite, e. g. a mounted camera or sensor. This
frame is imposed as a root frame according to the
Modelica MultiBody Library definition [25]. Hence,
the orientation Ra ∈ R3×3 as well as the angular ve-
locity ωa of the frame are computed consistently. In
addition, the kinematic tree of the satellite is rooted
in this frame, although the frame itself can be mov-
ing. This is necessary to handle overdetermined DAEs
with symbolic transformation techniques in a way that
is used in the Modelica MultiBody Library (for further
details see the appendix in [25]). The translation of the
ACS-frame is not restricted and it moves according to
the external forces and the gravity, which act on the
bodies connected to it. This results in a hybrid for-
ward/inverse model corresponding to the translation
and orientation. The model inversion is done by us-
ing the desired angular velocity ωD,ACS as input for the
local angular velocity of the ACS-frame ωa, starting
from a defined angular velocity ωa,0 and orientation.
The original input for the forward model Im, which is
the current of the three reaction wheels, is chosen as
the new output for the inverse model. The computation
of the required angular velocity ωD,ACS, for a specific
maneuver, will be described in section 5.

The ACS-frame is connected to the satellite body
with its actuators. The desired angular velocity ωD,ACS

of the ACS-frame is achieved by adding a set of equa-
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tions to force the angular velocities to the desired val-
ues (using Modelica inverse block constraints). This
results in three additional equations for the calculation
of the torques of the attached torque wheels τw ∈ R3.
The resulting equations for the ACS-frame model are
given in eq. (4).

Ra = frot(φACS) (4a)

ωa = fω(φACS, φ̇ACS) = ωD,ACS (4b)

τa = −τw (4c)

In eq. (4), frot and fω are functions to calculate the
transformation matrix Ra and local angular velocity
ωa. Although the values of the Cardan angles φACS

can jump, the internal representation of the orientation
is calculated using rotation matrices that remain con-
tinuous and show no singularities (see [25] for imple-
mentation details). The ACS-frame is forced to move
along the desired orientation and the required torques
are generated by the attached reaction wheels via τw

from which the motor currents Im can be computed
by inversion of the elastic powertrain and first order
motor dynamics [32, 31]. This is only possible if the
reaction wheels are mounted in such a way that they
can generate the required torque vector τw. Otherwise
the equation system will not be solvable (singular). If
more than three reaction wheels are used, a torque al-
location algorithm has to be implemented in addition.

4.1 Approximation of the deformation of
flexible structures of an inverse satellite
model

For satellites with flexible structures, depending on the
location of the ACS-frame, the exact inverse system
can be unstable, and therefore not useful for a con-
trol system. This can be checked by calculating the
transmission-zeros of the linearized system. If they
have a positive real part, the inverse model will be
unstable. They can be caused by the combination of
flexible structures and the chosen ACS-frame location.
In addition, the exact inversion of the equations of
motion of flexible structures with weak damping can
lead to numerical instability and stiff systems. A solu-
tion for this problem is to obtain an approximation of
the elastic deformations for the inverse satellite model.
Our method is based on a quasi-static approach using
two parallel models. A similar method was already
successfully implemented for the inversion of flexible
robot arms in [32, 31]. Starting points are flexible bod-
ies modeled after eq. (3) from an SID file. In the first

model, quasi-static approximations for the elastic de-
formation q̂∈Rne are calculated. In the second model,
these deformations are used as input for the flexible
parts and the resulting forces are re-calculated. Fig-
ure 4 shows an overview for the setup of the inverse
satellite model with flexible solar panels and power-
trains. For the first of the two parallel models, the
equations of motion for a flexible body are given in
eq. (5). The index i for each component is omitted
here.

(
mI3 sym.

md̃CM|q=0 Θ|q=0

)(
a(r)

R

ω̇(r)
R

)
(5a)

+

(
ω̃(r)

R ω̃(r)
R dCM|q=0

ω̃(r)
R + ω̃(r)

R Θ|q=0ω(r)
R

)
=

(
h(r)

t

h(r)
r

)

h(r)
e = Ct |q=q̂g(r)

re f (5b)

+
nnode

∑
j

(
ΦT

m, j|q=q̂ f (r)
re f , j + ΨT

m, j|q=q̂τ(r)
re f , j

)

= Ct |q=q̂a(r)
R +Cr|q=q̂ω̇(r)

R + Ge|q=q̂ω(r)
R

+Oe|q=q̂Ω(ω(r)
R )+ Keq̂ + De ˙̂q

The notation (.)(r) denotes variables calculated using
the assumption that forces which cause the deforma-
tions can be approximated by neglecting elastic defor-
mations (quasi-static). This also leads to a simplifica-
tion of terms that would normally depend on the elastic
deformation q. Therefore, the flexible structural parts
are calculated as rigid bodies and approximations for
the deformations q̂ are calculated using eq. (5) in the
first parallel model. To get a stable approximation,
terms for the second derivative with respect to time
involving ¨̂q are neglected in eq. (5), so that a nonlin-
ear first order differential equation (that is linear in its
highest derivative ˆ̇q) is obtained to approximate q in
the inverse model.

The approximation q̂ is used as input for the sec-
ond (parallel) inverse satellite model. In the second
model, the approximations for q̂ are used to recalculate
all forces and positions. This is necessary because the
resulting deformations change the forces and torques
that act on the connected bodies. The equations of mo-
tion of the flexible parts in the second model are given

Nonlinear inverse models for the control of satellites with flexible structures

582 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096577



in eq. (6).

(
mI3 md̃T

CM|q=q̂ CT
t |q=q̂

md̃CM|q=q̂ Θ|q=q̂ CT
r |q=q̂

)



a(II)
R

ω̇(II)
R
¨̂q


 (6)

+

(
2ω̃(II)

R CT
t |q=q̂ ˙̂q + ω̃(II)

R ω̃(II)
R dCM|q=q̂

Grn|q̇= ˙̂qω̃(II)
R + ω̃(II)

R Θ|q=q̂ω(II)
R

)

=

(
h(II)

t

h(II)
r

)

Because the approximation of the modal amplitudes
q̂ are used directly as input, equations for the modal
forces he are not necessary in eq. (6). In this equation,
the second derivative ¨̂q is again considered. In gen-
eral, if the flexible parts are connected to each other,
it is also possible that the reference accelerations and
velocities as well as the external forces change, so they
are denoted with the notation (.)(II).

This approximation is valid for small deformations
and smooth reorientation maneuvers without extreme
external forces and can always be calculated where
otherwise no solution could be found (because the ex-
act inverse model would be unstable, depending on the
chosen ACS-frame location). If the approximation is
sufficient for a specific application can be verified by
simulating the approximate inverse model in combina-
tion with the original forward model and looking at the
resulting error in the calculated torques and deforma-
tions. If the resulting error is within the mission toler-
ance, the approximation can be used. A feedback con-
troller can minimize the remaining error. A typical re-
sult for the approximation shows fig. 5, where the first
bending mode of an outer solar panel is compared to
the resulting first mode of the solar panel without ap-
proximation, when using the computed motor currents
Im as feed-forward command (without any feedback
controller). The approximation q̂1 follows q1 closely,
but a residual vibration remains at the end of the move-
ment which results from the (stable) first order approx-
imation for the modal amplitude in eq. (5). This vibra-
tion can be further damped by a feedback-controller.

The resulting state xinv, input uinv and the output yinv

for the inverse model model setup of fig. 4 is given
in eq. (7). The state of the inverse model consists of
the states of several subsystems. The states of the
ACS-frame xACS, the three powertrains xPT and the
states of the approximation of the modal amplitudes
q̂s for the three solar panel elements. They are mod-
eled with ne = 3 modes for each panel. For the pow-
ertrains the flexibility of the connection to the reaction
wheels is modeled as spring damper systems (states
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Figure 5: Comparison of the first mode (normalized)
between approximation q̂1 and resulting mode q1.

ϕrel,PT , ϕ̇rel,PT ). Because the parallel model setup is
used, two sets of states (I & II) are needed for xACS

and xPT .

xinv =
(

x(I)
ACS,x

(II)
ACS,x

(I)
PT ,x

(II)
PT , q̂s

)T
∈ R51 (7a)

uinv = ωD,ACS ∈ R3,yinv = Im ∈ R3 (7b)

with:

xACS = (φACS,r0,ACS,v0,ACS) (7c)

xPT = (ϕm, ϕ̇m,ϕrel,PT , ϕ̇rel,PT ) (7d)

If the input for uinv is not differentiable, a filter has to
be used and the states of the filter are then also part of
xinv. Simulation results showed that the inverse satel-
lite model can be used to accurately calculate the re-
quired motor currents and estimate the deformations of
the flexible parts using the new approximation method
for typical trajectories.

5 Computing optimal trajectories us-
ing inverse satellite models

The goal of the attitude trajectory optimization is to
find optimal motor currents Im ∈ R3 reorienting the
satellite from a starting orientation QD,0 (using a unit
quaternion representation QD ∈ R4) at time t0 to a de-
sired end orientation QD, f at time t f . Using a forward
model of the satellite with flexible structures, this op-
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timization problem is defined by eq. (8).

min
{

ξtt f + ξI ∑3
i=1

(∫ t f
t0 |Im,iϕ̇m,i|dt

)}
(8a)

with:

F(t,x, ẋ,z,u) = 0,x(t0) = x0, t ∈ [t0, t f ] (8b)

Q(x0,z0, t0) = QD,0 (8c)

constrained by:

|ϕ̇m| ≤ ϕ̇max
m (8d)

Q(x,z, t) = QD, f for t ≥ t f (8e)

with control function:

uc(t) = Im(t) ∈ R3, |Im,i| ≤ Imax
m (8f)

The chosen criteria allows the optimization of time- or
energy-optimal attitude trajectories (or mixtures). The
term F(t,x, ẋ,z,u) = 0 represents the nonlinear satel-
lite model in implicit DAE form where t denotes the
time, x the states, u the inputs (unknown motor cur-
rents u = Im) and z the algebraic variables of the sys-
tem. The scalar factors ξt ,ξI ∈ R+ are used to weight
the criteria for the optimization. The factor ξt weights
the resulting end time t f for which the end orientation
QD, f is reached, while ξI is a weight for the energy cri-
teria and ϕ̇m ∈ R3 are the motor angular velocities for
the three motors.

The optimization problem in eq. (8) is difficult to
solve directly because of the large solution space for
Im(t) in combination with the strict constraint for the
end orientation. By using an inverse satellite model
with flexible structures from section 4 and a param-
eterization of the orientation, the optimization prob-
lem can be greatly simplified. The desired orienta-
tion is restricted to a path QD(s(t)) which is calcu-
lated by using a spherical linear quaternion interpo-
lation (SLERP, see [6]) along a scalar path parameter
s(t) ∈ [0,1]. This results in an interpolation from the
starting orientation QD,0 = QD(s = 0) to the end orien-
tation QD, f = QD(s = 1). The desired angular veloc-
ity ωD,ACS for the ACS-frame which is used as input
for the inverse satellite model can be calculated using
eq. (9) where ω0 is the initial angular velocity of the
ACS-frame resolved in the ECI-frame and qi are scalar
elements of QD.

ωD,ACS = 2




q4 q3 −q2 −q1
−q3 q4 q1 −q2
q2 −q1 q4 −q3


 Q̇D (9)

+2
(
(q4q4−0.5)ω0 +((q1,q2,q3)T ω0)(q1,q2,q3)T

−q4((q1,q2,q3)T ×ω0)
)

The resulting optimization problem is described in

eq. (10).

min
{

ξtt f + ξI ∑3
i=1

(∫ t f
t0 |Im,iϕ̇m,i|dt

)}
(10a)

with:

F(t,x, ẋ,z,uc) = 0,x(t0) = x0, t ∈ [t0, t f ] (10b)

constrained by:

|ϕ̇m| ≤ ϕ̇max
m (10c)

|Im,i| ≤ Imax
m (10d)

∫ t f
0 uc(t)dt = s(t f ) = 1 (10e)

with control function:

uc(t) = ṡ(t) ∈ R+ (10f)

uc(t0) = uc(t f ) = u̇c(t0) = u̇c(t f ) = 0 (10g)

To achieve a finite optimization problem, the infinite
possibilities for the path parameter s(t), given by the
integration over the control function uc(t), have to be
limited by using an appropriate parameterization. This
is performed by using a B-spline [7] of order ns = 3
to parameterize uc(t). Using inverse models in com-
bination with a path parameter s(t) ∈ [0,1] inside the
optimization offers great advantages over a direct op-
timization of the motor currents:

• The number of necessary tuners2 is much smaller.
Instead of having to parametrize all three motor
currents Im(t), only one scalar function uc(t) has
to be parametrized.

• The optimization does not have to stabilize the
system like a controller. Using the desired path
QD(s) as input for the inverse model results in
reaching QD, f exactly.

The equality condition s(t f ) = 1 can still be difficult
to achieve for optimization algorithms. There are two
possible ways to overcome this. One possibility is to
avoid the equality condition by using an additional cri-
teria for the optimization in the form of eq. (11).

(s(t f )−1)2→ min (11)

However, this can lead to an unacceptable error in the
end-orientation QD, f . A better way to avoid the equal-
ity condition is to directly reshape the B-spline control
vector dc each time the tuner vector is modified by the
optimization algorithm. The modified vector is called

2The word tuners is used for the free parameters of an opti-
mization that are changed by the optimizer.
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d+
c ∈ Rnc and is calculated using eq. (12).

d+
c =

dc∫ t f
0

(
∑nc

i=1 dc,iNi,ns(t)
)

dt
(12a)

⇒ s(t f ) =
∫ t f

0

(
nc

∑
i=1

d+
c,iNi,ns(t)

)
dt = 1 (12b)

This reshaping leads directly to s(t f ) = 1 so that the
optimizer does not have to fulfill the equality condi-
tion by itself. For time optimal optimizations t f is also
a tuner and the discrete B-spline control points ti are
reshaped to lie in the interval [0, t f ] if t f is modified by
the optimization algorithm.

5.1 Trajectory optimization results

Trajectory optimizations on the basis of an inverse
satellite model were performed for a reorientation ma-
neuver of 28◦ around the axis erot = (1,1,1)T .
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Figure 6: Motor currents for the energy optimal con-
trol function.
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Figure 7: Energy optimal control function for fixed t f .

All optimization are performed using a B-spline pa-
rameterization of the control function with dc ∈R30 as
described in the last section. Starting values are found

0 2 4 6
−1

−0.5

0

0.5

1

time [s]

m
o
to
r
cu
rr
en
t
(s
ca
le
d
)

 

 

Im,1/I
max
m

Im,2/I
max
m

Im,3/I
max
m

Figure 8: Motor currents for the time optimal control
function.
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Figure 9: Time optimal control function.

using a global genetic algorithm with a population size
of 100 and a rigid inverse satellite model. After good
initial parameters have been found, the parameters are
refined using a local pattern search algorithm [14, 27]
with a complete approximate structural elastic inverse
satellite model as described in sec. 3 (including flexi-
ble powertrains and flexible solar panels). For both op-
timization steps the reshaping of the tuners was used
as described in the last section.

The first optimization was performed for a fixed
end-time t f = 10s. It was the goal to minimize the
required energy of this maneuver, according to the cri-
teria given in eq. (10) with ξt = 0 and ξI = 1. The plots
in fig. 6 and fig. 8 show the resulting optimized mo-
tor currents and the corresponding control functions
as shown in fig. 9 and fig. 7. The second optimization
was performed for the parameters ξt = 1 and ξI = 0 in
eq. (10) with free end time t f (as tuner) and results in
a time optimal solution for the given path. The result-
ing trajectories allow to reorient the satellite accord-
ing to the desired SLERP path. Although there are
still oscillations of the flexible components (e. g. solar
panels), they are compensated by the reaction wheels
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such that the ACS-frame follows the desired path. In
addition, limitations on the motor currents and motor
velocities are maintained. Small errors that result from
the approximations used for the generation of the in-
verse model can be compensated by a feedback con-
troller (in addition to modeling errors in the case of a
real satellite).

6 Conclusion

In this paper, we have presented the Space Sys-
tems Library which provides components for satel-
lite/spacecraft nonlinear modeling in Low Earth en-
vironment. We demonstrated the library capabilities
with a new method for model-based attitude control of
a satellite with flexible solar panels.

The method consists on transferring the inverse flex-
ible model approach, successfully implemented in the
field of industrial robotics, to the application of flexi-
ble satellites modeling and control.

The inverse satellite model allows the computation
of the motor currents for a given trajectory of the satel-
lite in a way that the elasticity of the powertrains and
flexible solar panels is taken into account and compen-
sated. Using the inverse model, optimal re-orientation
maneuvers have been computed for energy and time
optimality. The use of inverse satellite models in this
optimization greatly improves the optimization pro-
cess by simplifying the problem considerably.

As part of a two degree of freedom control sys-
tem, the inverse satellite model can be used as a feed-
forward controller to compensate elastic effects and
other modeled nonlinear effects that act on the satel-
lite.
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