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Abstract 

This paper shows how different kinds of optimi-

zation related task such as offline optimization 

or optimal control are solved using a combina-

tion of Modelica, Optimica, JModelica.org and 

Python. The application examples presented in 

this paper are all real industrial applications in 

the field of Combined Cycle Power Plants. 

Therefore different workflows have to be com-

bined to solve the underlying task. This paper 

shows that these workflows can be conveniently 

connected using Python.  

 

Keywords: Dynamic optimization, Nonlinear Model 

Predictive Control, Extended Kalman Filter  

1 Introduction 

Using simulation models to study plant behavior 

is state of the art today. So more and more attention 

is paid to applications related to optimization tasks. 

This includes e.g. offline optimization of plants, op-

timal plant control or parameter estimation using 

measurement data. These tasks often need different 

parts as initialization, simulation and optimization.  

This paper shows a methodology which combines 

the optimization platform JModelica.org [1], the 

modeling language Modelica, an optimization exten-

sion to Modelica (Optimica) and a scripting envi-

ronment (Python [2][1]) in order to solve the differ-

ent optimization tasks mentioned above.  

Each optimization task is illustrated by an indus-

trial application.   

The paper is structured as follows: Section 2 

gives some background information about Optimica 

and Python, while section 3 explains the different 

industrial applications with focus on scripting. Sec-

tion 4 summarizes the results of the paper.  

 

2 Background 

JModelica.org is an extensible Modelica-based open 

source platform for optimization, simulation and 

analysis of complex dynamic systems. A unique fea-

ture of JModelica.org is the support for the extension 

Optimica. Optimica enables users to conveniently 

formulate optimization problems based on Modelica 

models using simple but powerful constructs for en-

coding of optimization interval, cost function and 

constraints. For user interaction JModelica.org relies 

on the Python language. Python offers an interactive 

environment suitable. The following subsections 

give an introduction to Optimica and show the ad-

vantages of the scripting language Python.  

2.1 Optimica 

The Optimica extension mainly consists of an addi-

tional class, optimization, which includes the attrib-

utes such as startTime, stopTime and objective, 

which specify the objective function of the optimiza-

tion problem. Another supplement is the constraint 

section, which can handle different kinds of linear 

and non-linear equality- and inequality constraints. 

A wide range of optimization problems may be 

solved formulated with Optimica, for example: pa-

rameter estimation, tracking, optimal control and so 

on. Here is a simple example, an optimization prob-

lem, based on the double integrator: 
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For this problem, is considered to be free and the 

objective is to minimize the time it takes to transfer 

the states from (0, 0) to (0, 1) without violating the 

constraints. The corresponding problem formulated 

in Modelica and Optimica looks like this: 

 

 
 

The attribute free = true indicates that the variable 

is an optimization variable and the attribute initial-

Guess provides the numerical solver with an initial 

guess. 

The optimization problem is solved numerically 

and there is hence an aspect of discretization to con-

sider, but this is considered outside of Optimica. Op-

timica only represents the mathematical formulation 

of the problem and several different solver algo-

rithms can be used for solving the different problems 

at hand. For details on Optimica, see [9].  

2.2 Python 

Python is open source and a very powerful dynamic 

programming language that is used in a wide range 

of application domains. Especially interesting fea-

tures of Python related to the applications covered in 

this paper are how well it works with other tools and 

its scripting possibilities. There are for example in-

terfaces for Gnuplot [10] and Matplotlib [11], which 

are both suitable for plotting purpose. 

Python is compatible with Optimica and it is pos-

sible to interact with Modelica and Optimica models 

through Python scripting (the Python interface of the 

Jmodelica.org platform is great for this). For exam-

ple, it enables the possibility to do parameter manip-

ulations and to perform simulation and optimization 

for a variety of setups. The discretization and solver 

options (e.g. tolerances) for simulation and optimiza-

tion can easily be set through the Python script. 

The Modelica and Optimica models consists of a 

set of states, algebraic variables and input variables 

and they are represented by two model object types; 

FMU (Functional Mock-up Unit) and JMU (JModel-

ica Model Unit), respectively. FMUs are mainly used 

for simulation and they follow the FMI-standard 

(Functional Mock-up Interface), which specifies how 

the models should be represented and stored [16]. 

JMUs are mainly used for optimization and follow 

the JModelica.org standard, similar to the FMI 

standard for FMUs. For more details see [14]. Both 

model object types can be imported in to Python. 

Besides JModelica.org the open source simulation 

and optimization tool OpenModelica [8] supports 

Python with its interface called OMPython enabling 

the user to use the modeling and simulation capabili-

ties of OpenModelica within the Python environ-

ment. 

The Python packages SciPy [12] and NumPy [13]  

support linear algebra and matrix operations and are 

useful when scripting, both for pre- and post-

processing, in plotting and in the implementation of 

algorithms. 

Below is a simple example that demonstrates 

what scripting in Python may look like, using JMod-

elica.org. The script solves the optimization problem 

described in section 2.1. DoubleIntegrator.mo con-

tains the model and DIMinTime.mop contains the op-

timization model. A JMU object is created based on 

these. 

model DoubleIntegrator 

Real x(start=0); 

Real v(start=0); 

input Real u; 

equation 

der(x)=v; 

der(v)=u; 

end DoubleIntegrator; 

optimization DIMinTime ( 

objective= finalTime,  

startTime=0, 

finalTime(free=true,initialGuess=1)) 

 

extends DoubleIntegrator( 

u(free=true, initialGuess = 0.0)); 

constraint 

x(finalTime)=1; 

v(finalTime)=0; 

v<=0.5; 

u>=-1; 

u<=1; 

end DIMinTime; 
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Figure 1: The optimization results 

3 Case studies 

The JModelica.org platform can be used to perform 

offline optimization. Python scripting is used for pre- 

and post-processing.  

 

3.1 Offline optimization: Start-up of a com-

bined cycle power plant 

The aim of this offline optimization is to maximize 

power output of gas and steam turbines without vio-

lating given constraints on temperature differences in 

several components. The optimizer shall find opti-

mized control inputs for gas turbine power and four 

different control valves (see Figure 2). 

This model is an extension of the model presented in 

[6]: the model scope has been enlarged to also in-

clude high pressure (HP) and intermediate pressure 

(IP) turbine and the corresponding valves. 

 

 
Figure 2: Model for startup optimization 

3.1.1. Python Scripting 

Figure 3 illustrates the steps written in Python to per-

form offline optimization. 

 

Since the gas turbine power is fixed until synchroni-

zation of the gas turbine, the optimization can not 

start at t = 0s, but only after synchronization, at t = 

t_opt_start. Therefore a first simulation determines 

the initial conditions for the optimization. Addition-

ally to the state initialization at optimization starting 

point, the optimization algorithm also needs a guess 

trajectory for all variables. If no explicit guess trajec-

tory is supplied it can be obtained using a second 

simulation. After the optimized control input has 

been obtained, several post-processing steps are tak-

en (see Figure 3). In this specific application, the 

optimization result and the result of the first simula-

tion (until synchronization of the gas turbine) are 

concatenated to obtain the complete time-dependent 

behavior of the plant. Also it proved to be useful to 

run a check, whether all variables are well scaled and 

whether the constraints are also kept between the 

collocation points. It has to be stated, that the Python 

scripting environment offers a very convenient and 

flexible way to include different pre- and post-

optimization tasks. 

 

# Importing necessary packages and functions 

import numpy as N 

from pymodelica import compile_jmu 

from pyjmi import JMUModel 

import matplotlib.pyplot as plt 

 

# Compiling a JMU- object for optimization  

# based on the double integrator 

jmu_name= compile_jmu("DIMinTime",  

["DoubleIntegrator.mo", "DIMinTime.mop"]) 

 

# Loading the JMU-object 

model_opt = JMUModel(jmu_name) 

 

# Calling the optimiztion function with  

# default settings 

res = model_opt.optimize(); 

 

# Plotting the results 

x= res['x'] 

v =res['v'] 

 

# u is the optimal trajectory 

u =res['u']  

time = res['time'] 

 

plt.plot(time, x, ':k',  time, v, '--k',  

time, u,'-k') 

plt.grid(True) 

 

# Increasing the plot window to show results 

plt.ylim([-1.5,2])  

plt.legend(('x','v','u')) 

plt.title('Simple example') 

plt.show() 
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Figure 3: Steps written in Python when performing 

offline optimization 

3.1.2. Results of the offline startup optimization 

An offline startup optimization of the system shown 

in Figure 2 has been performed where the character-

istics are given below: 

 

Constraints: 

 Model equations 

 Maximum pressure of 170 bar  

 Pressure dependent maximum wall tem-

perature difference for several compo-

nents (i.e. HP and IP turbine casing, heat 

exchanger manifolds etc.) 

 Minimum mass flow rate change for a 

certain mass flow range 

 Maximum negative GT power derivative 

 

Control inputs: 

 Gas turbine power 

 HP and IP turbine bypass valve 

 HP and IP turbine control valve 

 

Optimization objective: 

 Maximization of total power output (gas 

turbine power + power of HP and IP tur-

bine) 

 

Some optimization results are presented in the fol-

lowing figures. 
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Figure 4: Normalized gas turbine (GT) load (actual 

divided by maximum gas turbine load). 
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Figure 5: Normalized steam turbine power (solid line: 

HP turbine, dashed line: IP turbine) 

1st simulation:  

Simulate optimization model with given control inputs 

from t=0s to t=t_opt_start to obtain initial states at the 

starting point of the offline optimization. 

Generate initial trajectory 

Optimization model: initialize states to the values ob-

tained in the 1st simulation at t_opt_start  

Run optimization:  

Obtain optimized control input 

Concatenation 

Concatenate result of 1st simulation with optimization 

result to obtain one single result showing the dynamic 

plant behavior from t = 0s to t = t_opt_end 

Run test whether all constraints are kept at all times 

Search for scaled values far away from 1 

Set optimization options and guess trajectory. 

Use existing 

initial trajectory 

as .txt-file  

2nd simulation: 

Simulate optimization model 

with guess control input values 

from t_opt_start to t_opt_end to 

generate initial trajectory 

3rd simulation:  

Simulate optimization model with optimized control 

input to check accuracy of the discretization when us-

ing collocation 
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Figure 6: Normalized temperature differences (actual 

temperature difference divided by maximum allowable 

temperature difference) in critical components  

 

It can be seen that the optimizer first strongly in-

creases the gas turbine power to maximize the power 

output (Figure 4). Then the gas turbine power is de-

creased again to keep the temperature difference in 

the critical components below their maximum value 

(Figure 6). 

3.2 Nonlinear Model Predictive Control with 

State Estimation: Extended Kalman Filter 

The basic concept of Nonlinear Model Predictive 

Control (NMPC) is to use a dynamic model to fore-

cast system behavior and optimize the forecast to 

produce the best decision. In practice an optimal 

control problem is solved over a finite future hori-

zon, but only the first optimal control signal is ap-

plied to the system. Then the optimization horizon is 

shifted and the calculations are repeated.  

The solution of the optimal control problem de-

pends on the initial state of the model which is the 

current state of the plant. In general, measurements 

are disturbed by noise or are missing, so that a state 

estimation algorithm is needed to determine the ini-

tial states under consideration of the past record of 

measurements. 

3.2.1 Python Scripting  

The python script for optimization with JModeli-

ca.org looks as in Figure 7. 

 

This scheme describes the NMPC loop with two 

dynamic models – one model called optimization 

model, the other real plant model. The real plant 

model illustrates the real plant behavior and is more 

detailed than the optimization model. In future the 

real plant model will be replaced by measurements 

of the real plant. 

 

The NMPC loop starts with the generation of an 

initial trajectory for the optimization. As an alterna-

tive the optimization can be initialized with an opti-

mization result too. The initial trajectory is generated 

by simulating a FMU of the optimization model. 

The second step is to solve the optimization prob-

lem from t to t+H, where t is the actual time and H 

the length of the finite optimization horizon (see 

Figure 8). The optimization horizon is divided into N 

steps, but only the first control signal is applied to 

real plant model and the model is simulated to get 

the new state of the plant. The following step is the 

state estimation which is explained in more detail 

below. After the initial state of the model is updated 

the optimization horizon is moved and the optimiza-

tion is solved again from t= t+h (h= H/N) to t+2*h. 

All steps will be repeated until the final time of the 

optimization t_opt_end is reached.  

 

 
Figure 7: Steps written in Python performing NMPC 

with state estimation 

 

Simulate optimization model over complete opti-

mization horizon to generate initial trajectory for 

optimization 

At time t: Solve optimal control problem over a 

finite horizon H with N steps 

Apply first optimal control u[0] to real plant model  

Simulate real plant model from t to t+h with calcu-

lated value of optimal control 

Estimate the current state of x (t+h) and initialize 

the states of the optimization model 

Shift time and restart with the second step. 
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Figure 8: NMPC scheme 

 

The strategy of Extended Kalman Filter (EKF) is 

used for state estimation. The Kalman filter origi-

nates from probability theory and it is well estab-

lished that the Kalman filter is the optimal state es-

timator for a linear system affected by white noise. 

The Kalman filter minimizes the estimation error by 

considering past data of the system. This can be de-

scribed in a recursive way which is convenient for 

implementation purposes [15]. Concerning the nota-

tion,   corresponds to the estimation of x at 

time = t+1 given the information at time = t.  

The setup of EKF is according to Figure 9. The 

estimation consists of two main steps; the prediction 

and the correction. In the prediction step, the state 

values at time t+1 are estimated from the system rep-

resentation ( ). The covariance matrix of the 

estimation error at the prediction step ( ) is also 

updated in this step. 

In the correction step, the Kalman gain ( ) is 

updated. It is then used to derive the corrected state 

estimation ( ) by combining the result of pre-

diction step and the latest plant measurements ( ). 

The covariance matrix for the estimation error at the 

correction step (Pt+1|t+1) is also updated here. The 

steps are described in more detail below. 

 

 
Figure 9: Structure of EKF, where ref corresponds to 

the control reference, u to the control signal, and x to 

the state estimation at different stages and y to the real 

plant measurements. 

 

The EKF is an extension of the Kalman filter for 

nonlinear process models and the approach is basi-

cally the same as in the linear case, with an addition-

al linearization to get approximations of  and 

 matrices (using standard notation for linear 

systems), which are used by the filter. The lineariza-

tion step was realized with the JModelica.org library 

pyjmi.linearization. 

 

Prediction: 

 By simulating a FMU of the optimi-

zation model. 

 By linearizing a JMU of the optimi-

zation model (at ). 

  

 

Correction: 

 By linearizing a JMU of the optimi-

zation model (at ) 

  

 By simulating a FMU of the real 

plant model. 

  
   

 

Q and R represent the covariance matrices for 

process and measurement noise.  

For this example, we assumed that both noises are 

uncorrelated and conform to a normal distribution. Q 

and R are diagonal matrices. The entries on the diag-

onal of the covariance matrices Q and R are the vari-

Controller  

Prediction step 

Correction step 

 

Process 

EKF 

 

u 

 

t= t+1 

 

 

ref 
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ances of each process variable and measurement and 

are set to 1 in most cases. Q and R where approxi-

mated to be uncorrelated in time and the diagonal 

elements where set to: one over the square root of the 

standard deviation of the corresponding 

state/measurement, in most cases to 1. 

 

The EKF does not consider constraints, and this 

has to be compensated for in an additional step (the 

feasibility correction). This is important to note since 

the optimization strategy is interior point optimiza-

tion, and no solution will be found if the starting 

point is outside of the feasible region.  

The strategy to considering this fact was simply 

to use the prediction as state estimation, without the 

correction step, since the prediction always will be 

feasible.   

3.2.2 Results of NMPC with State Estimation: 

Extended Kalman Filter 

In reality, there will be large differences between the 

controller model and the real plant, this is natural. 

However, for the evaluation of the implementation, 

the models were kept basically the same, with the 

same state representation. The optimization model 

was augmented in order to compensate for the differ-

ences between the plant models. The differences 

were approximated as constant disturbances, by in-

troducing the additional states d, here on referred to 

as the disturbance states. These are unmeasurable 

states of the real plant and their values can be esti-

mated by the EKF.  

See a simple example of the augmentation below, 

where x represent the original states, f(x, u) repre-

sents the process with input u and d represent the 

disturbance states.  

 

 

 

The NMPC loop combined with state estimation was 

evaluated using the example of an enthalpy control-

ler of the heat recovery steam generator (HRSG) 

(consisting of economizer, evaporator and superheat-

er, see Figure 10) of a combined cycle power plant.  

 

Economizer

Evaporator

Superheater

flue gas

steam

water

 
Figure 10: Rough sketch of the system to be controlled. 

Two disturbance states were added to the optimiza-

tion model (one to the flue gas mass flow rate and 

one to the water pressure) in order to consider differ-

ences. Additionally a parameter related to the heat 

transfer was modified to represent a typical modeling 

error in addition to initial offsets for each state. 

 

There were three objectives for the controller and 

they were considered in the formulation of the opti-

mization problem: 

1. Keep the steam temperature at the super-

heater outlet at desired set point. 

2. Guarantee subcooling at the evaporator inlet 

by keeping the temperature below a speci-

fied maximum value. 

3. Have an adequate degree of superheating at 

the outlet of the evaporator section. 

 

Figure 11 and Figure 12 display the results for this 

setup. 

 
Figure 11: The progress of the state estimation, scaled 

according to nominal value and time. The red line rep-

resents the real plant behavior. The top plot represents 

one of the process states, the enthalpy at the inlet of 

first evaporator. The bottom plot represents the intro-

duced disturbance state, with an initial error 
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Figure 12: The control objective, scaled according to 

nominal value and time. The top plot displays the tem-

perature set point control; the red line represents the 

set point. The middle plot displays the sub cooling con-

trol; the red line represents the maximum value for the 

temperature at the economizer outlet (pressure de-

pendent). The bottom plot displays the superheating 

control, the red lines represents the mini-

mum/maximum degree of superheating. 

 

The jumping in Figure 11 is related to the correc-

tion step of the EKF. Also worth noting is that the 

disturbance state does not estimate the constant dis-

turbance to 0, and this is probably due to the intro-

duced modeling error. The disturbance state tries to 

compensate for this as well. 

The controller performance is quite satisfying, but 

there are some offsets that should be considered in 

the future work with optimization problem formula-

tion. The reason for the offset can for example be 

related to the fact that the plant did not reach steady 

state within the time frame for the experiment. It is 

not clear from Figure 11, but it is however the case. 

Evaluating the performance for a longer time might 

get rid of the offset, but this was not possible to real-

ize at the time of the application evaluation because 

of some memory leaks. Modifications to the objec-

tive function could be increasing the weight on the 

elements in the objective function related to set point 

deviations. 

3.3 Parameter estimation 

Parameters are typically estimated by some form of 

least squares. This method minimizes the sum of the 

squared discrepancies between measurement and 

expected value. M is the number of measurements 

and N the number of discrete time steps.    
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The default algorithm for solving optimal control 

problems and parameter estimation problems in 

JModelica.org is the collocation algorithm. For our 

application we used the Nelder-Mead method, a heu-

ristic search method using the concept of a (N+1)-

dimensional simplex, where N is the number of es-

timated parameters. These kinds of derivative free 

algorithms are implemented in JModelica.org ([2]).  

The Nelder-Mead algorithm was the preferred 

choice, although this method is quite slow, but has 

the best convergence behavior especially for many 

measurements and a lot of parameters. 

3.3.1 Python Scripting  

As the Nelder-Mead method is already implemented 

in JModelica.org as described in [9], the python 

script is quite simple. In a first step all measurements 

are imported from .mat file. Then the Nelder-Mead 

function nelme is called which solves the optimiza-

tion problem and uses the defined objective function 

as input.  

3.3.2 Results of Parameter estimation 

A parameter estimation of the Modelica model for 

optimizing the start up process of a combined cycle 

power plant in 3.1 has been implemented.  

The real plant measurements were given for a period 

of 1h. The data were loaded in python as .mat file. 

The gas turbine power, the gas turbine mass flow, 

the injection mass flow and the back pressure meas-

urement were set directly as boundaries of the mod-

el, the other measurements (wall temperatures, fluid 

temperatures and pressure) are used to minimize the 

error between the measurements and their simulated 

values.  

The algorithm was tested for two measurement 

sets to verify the result, one for a hot start and one 

for a warm start of the power plant. As expected the 

estimated parameters have smaller differences, but 

have equal dimensions. 

Figure 13 shows the simulation result with origi-

nal and optimized parameters compared to measure-

ments. As can be seen, the simulation result with the 

optimized parameter fits better to the measurements. 

Nevertheless there are still differences between the 

model and the real plant behavior. Uncertainty of 

measurements, not modeled effects and components 

are some reasons for the deviations. 
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Figure 13: Simulation result with original parameters 

(green) optimized parameters (blue) and measure-

ments (red). The top plot displays the wall temperature 

of the separator; the middle plot displays the reheat 

mass flow and the bottom plot the outlet temperature 

of the first superheater. 

 

4 Summary 

This paper shows how different industrial optimiza-

tion applications can be solved combining Modelica 

and Optimica with the scripting language Python.  

Three different optimization tasks have been consid-

ered to improve the dynamic processes in a com-

bined cycle power plant: offline optimization of the 

start-up process, online enthalpy control of the 

HRSG and parameter estimation for the start-up op-

timization. 

All optimization tasks have been formulated with 

Optimica based on Modelica models. For pre- and 

post processing issues and interaction of JModeli-

ca.org and the Modelica models, the scripting tool 

Python was used.  

As shown in section 3 ‘Case studies’, for complex 

optimization techniques like NMPC with combina-

tions of several optimization and simulation steps, 

Python is ideally suited. For industrial applications 

of power plant sector the definition of such control-

lers inside the Modelica model is not desired and 

unnecessary since other interfaces (e.g. connection to 

database) have to be realized additionally. 

The work presented in this paper is one step towards 

a complete online-optimization tool chain for 

NMPC.   
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