
Industrial application of optimization with Modelica and Optimica us-

ing intelligent Python scripting

K. Dietl
a
, S. Gallardo Yances

a
, A. Johnsson

b

J. Åkesson
c
, K. Link

a
, S. Velut

c

a
Siemens AG, Energy Sector, Erlangen, Germany

b
Lund University, Department of Automatic Control, Lund, Sweden.

c
Modelon AB, Lund, Sweden.

Abstract

This paper shows how different kinds of optimi-

zation related task such as offline optimization

or optimal control are solved using a combina-

tion of Modelica, Optimica, JModelica.org and

Python. The application examples presented in

this paper are all real industrial applications in

the field of Combined Cycle Power Plants.

Therefore different workflows have to be com-

bined to solve the underlying task. This paper

shows that these workflows can be conveniently

connected using Python.

Keywords: Dynamic optimization, Nonlinear Model

Predictive Control, Extended Kalman Filter

1 Introduction

Using simulation models to study plant behavior

is state of the art today. So more and more attention

is paid to applications related to optimization tasks.

This includes e.g. offline optimization of plants, op-

timal plant control or parameter estimation using

measurement data. These tasks often need different

parts as initialization, simulation and optimization.

This paper shows a methodology which combines

the optimization platform JModelica.org [1], the

modeling language Modelica, an optimization exten-

sion to Modelica (Optimica) and a scripting envi-

ronment (Python [2][1]) in order to solve the differ-

ent optimization tasks mentioned above.

Each optimization task is illustrated by an indus-

trial application.

The paper is structured as follows: Section 2

gives some background information about Optimica

and Python, while section 3 explains the different

industrial applications with focus on scripting. Sec-

tion 4 summarizes the results of the paper.

2 Background

JModelica.org is an extensible Modelica-based open

source platform for optimization, simulation and

analysis of complex dynamic systems. A unique fea-

ture of JModelica.org is the support for the extension

Optimica. Optimica enables users to conveniently

formulate optimization problems based on Modelica

models using simple but powerful constructs for en-

coding of optimization interval, cost function and

constraints. For user interaction JModelica.org relies

on the Python language. Python offers an interactive

environment suitable. The following subsections

give an introduction to Optimica and show the ad-

vantages of the scripting language Python.

2.1 Optimica

The Optimica extension mainly consists of an addi-

tional class, optimization, which includes the attrib-

utes such as startTime, stopTime and objective,

which specify the objective function of the optimiza-

tion problem. Another supplement is the constraint

section, which can handle different kinds of linear

and non-linear equality- and inequality constraints.

A wide range of optimization problems may be

solved formulated with Optimica, for example: pa-

rameter estimation, tracking, optimal control and so

on. Here is a simple example, an optimization prob-

lem, based on the double integrator:

Subject to:

DOI
10.3384/ECP14096777

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

777

For this problem, is considered to be free and the

objective is to minimize the time it takes to transfer

the states from (0, 0) to (0, 1) without violating the

constraints. The corresponding problem formulated

in Modelica and Optimica looks like this:

The attribute free = true indicates that the variable

is an optimization variable and the attribute initial-

Guess provides the numerical solver with an initial

guess.

The optimization problem is solved numerically

and there is hence an aspect of discretization to con-

sider, but this is considered outside of Optimica. Op-

timica only represents the mathematical formulation

of the problem and several different solver algo-

rithms can be used for solving the different problems

at hand. For details on Optimica, see [9].

2.2 Python

Python is open source and a very powerful dynamic

programming language that is used in a wide range

of application domains. Especially interesting fea-

tures of Python related to the applications covered in

this paper are how well it works with other tools and

its scripting possibilities. There are for example in-

terfaces for Gnuplot [10] and Matplotlib [11], which

are both suitable for plotting purpose.

Python is compatible with Optimica and it is pos-

sible to interact with Modelica and Optimica models

through Python scripting (the Python interface of the

Jmodelica.org platform is great for this). For exam-

ple, it enables the possibility to do parameter manip-

ulations and to perform simulation and optimization

for a variety of setups. The discretization and solver

options (e.g. tolerances) for simulation and optimiza-

tion can easily be set through the Python script.

The Modelica and Optimica models consists of a

set of states, algebraic variables and input variables

and they are represented by two model object types;

FMU (Functional Mock-up Unit) and JMU (JModel-

ica Model Unit), respectively. FMUs are mainly used

for simulation and they follow the FMI-standard

(Functional Mock-up Interface), which specifies how

the models should be represented and stored [16].

JMUs are mainly used for optimization and follow

the JModelica.org standard, similar to the FMI

standard for FMUs. For more details see [14]. Both

model object types can be imported in to Python.

Besides JModelica.org the open source simulation

and optimization tool OpenModelica [8] supports

Python with its interface called OMPython enabling

the user to use the modeling and simulation capabili-

ties of OpenModelica within the Python environ-

ment.

The Python packages SciPy [12] and NumPy [13]

support linear algebra and matrix operations and are

useful when scripting, both for pre- and post-

processing, in plotting and in the implementation of

algorithms.

Below is a simple example that demonstrates

what scripting in Python may look like, using JMod-

elica.org. The script solves the optimization problem

described in section 2.1. DoubleIntegrator.mo con-

tains the model and DIMinTime.mop contains the op-

timization model. A JMU object is created based on

these.

model DoubleIntegrator

Real x(start=0);

Real v(start=0);

input Real u;

equation

der(x)=v;

der(v)=u;

end DoubleIntegrator;

optimization DIMinTime (

objective= finalTime,

startTime=0,

finalTime(free=true,initialGuess=1))

extends DoubleIntegrator(

u(free=true, initialGuess = 0.0));

constraint

x(finalTime)=1;

v(finalTime)=0;

v<=0.5;

u>=-1;

u<=1;

end DIMinTime;

Industrial application of optimization with Modelica and Optimica using intelligent Python scripting

778 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096777

Figure 1: The optimization results

3 Case studies

The JModelica.org platform can be used to perform

offline optimization. Python scripting is used for pre-

and post-processing.

3.1 Offline optimization: Start-up of a com-

bined cycle power plant

The aim of this offline optimization is to maximize

power output of gas and steam turbines without vio-

lating given constraints on temperature differences in

several components. The optimizer shall find opti-

mized control inputs for gas turbine power and four

different control valves (see Figure 2).

This model is an extension of the model presented in

[6]: the model scope has been enlarged to also in-

clude high pressure (HP) and intermediate pressure

(IP) turbine and the corresponding valves.

Figure 2: Model for startup optimization

3.1.1. Python Scripting

Figure 3 illustrates the steps written in Python to per-

form offline optimization.

Since the gas turbine power is fixed until synchroni-

zation of the gas turbine, the optimization can not

start at t = 0s, but only after synchronization, at t =

t_opt_start. Therefore a first simulation determines

the initial conditions for the optimization. Addition-

ally to the state initialization at optimization starting

point, the optimization algorithm also needs a guess

trajectory for all variables. If no explicit guess trajec-

tory is supplied it can be obtained using a second

simulation. After the optimized control input has

been obtained, several post-processing steps are tak-

en (see Figure 3). In this specific application, the

optimization result and the result of the first simula-

tion (until synchronization of the gas turbine) are

concatenated to obtain the complete time-dependent

behavior of the plant. Also it proved to be useful to

run a check, whether all variables are well scaled and

whether the constraints are also kept between the

collocation points. It has to be stated, that the Python

scripting environment offers a very convenient and

flexible way to include different pre- and post-

optimization tasks.

Importing necessary packages and functions

import numpy as N

from pymodelica import compile_jmu

from pyjmi import JMUModel

import matplotlib.pyplot as plt

Compiling a JMU- object for optimization

based on the double integrator

jmu_name= compile_jmu("DIMinTime",

["DoubleIntegrator.mo", "DIMinTime.mop"])

Loading the JMU-object

model_opt = JMUModel(jmu_name)

Calling the optimiztion function with

default settings

res = model_opt.optimize();

Plotting the results

x= res['x']

v =res['v']

u is the optimal trajectory

u =res['u']

time = res['time']

plt.plot(time, x, ':k', time, v, '--k',

time, u,'-k')

plt.grid(True)

Increasing the plot window to show results

plt.ylim([-1.5,2])

plt.legend(('x','v','u'))

plt.title('Simple example')

plt.show()

Session 5B: Power, Energy & Process Applications 1

DOI
10.3384/ECP14096777

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

779

Figure 3: Steps written in Python when performing

offline optimization

3.1.2. Results of the offline startup optimization

An offline startup optimization of the system shown

in Figure 2 has been performed where the character-

istics are given below:

Constraints:

 Model equations

 Maximum pressure of 170 bar

 Pressure dependent maximum wall tem-

perature difference for several compo-

nents (i.e. HP and IP turbine casing, heat

exchanger manifolds etc.)

 Minimum mass flow rate change for a

certain mass flow range

 Maximum negative GT power derivative

Control inputs:

 Gas turbine power

 HP and IP turbine bypass valve

 HP and IP turbine control valve

Optimization objective:

 Maximization of total power output (gas

turbine power + power of HP and IP tur-

bine)

Some optimization results are presented in the fol-

lowing figures.

0

0.2

0.4

0.6

0.8

1

Time

G
T

 p
o
w

e
r

/
m

a
x
im

u
m

 G
T

 p
o
w

e
r

Figure 4: Normalized gas turbine (GT) load (actual

divided by maximum gas turbine load).

0

0.2

0.4

0.6

0.8

1

Time

S
T

 p
o
w

e
r

 /
 m

a
x
im

u
m

 S
T

 p
o
w

e
r

HP

IP

Figure 5: Normalized steam turbine power (solid line:

HP turbine, dashed line: IP turbine)

1st simulation:

Simulate optimization model with given control inputs

from t=0s to t=t_opt_start to obtain initial states at the

starting point of the offline optimization.

Generate initial trajectory

Optimization model: initialize states to the values ob-

tained in the 1st simulation at t_opt_start

Run optimization:

Obtain optimized control input

Concatenation

Concatenate result of 1st simulation with optimization

result to obtain one single result showing the dynamic

plant behavior from t = 0s to t = t_opt_end

Run test whether all constraints are kept at all times

Search for scaled values far away from 1

Set optimization options and guess trajectory.

Use existing

initial trajectory

as .txt-file

2nd simulation:

Simulate optimization model

with guess control input values

from t_opt_start to t_opt_end to

generate initial trajectory

3rd simulation:

Simulate optimization model with optimized control

input to check accuracy of the discretization when us-

ing collocation

Industrial application of optimization with Modelica and Optimica using intelligent Python scripting

780 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096777

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time

T
e
m

p
e
ra

tu
re

 d
if
fe

re
n
c
e
s
 i
n
 K

/K

header

tee

HP turbine case

IP turbine case

Figure 6: Normalized temperature differences (actual

temperature difference divided by maximum allowable

temperature difference) in critical components

It can be seen that the optimizer first strongly in-

creases the gas turbine power to maximize the power

output (Figure 4). Then the gas turbine power is de-

creased again to keep the temperature difference in

the critical components below their maximum value

(Figure 6).

3.2 Nonlinear Model Predictive Control with

State Estimation: Extended Kalman Filter

The basic concept of Nonlinear Model Predictive

Control (NMPC) is to use a dynamic model to fore-

cast system behavior and optimize the forecast to

produce the best decision. In practice an optimal

control problem is solved over a finite future hori-

zon, but only the first optimal control signal is ap-

plied to the system. Then the optimization horizon is

shifted and the calculations are repeated.

The solution of the optimal control problem de-

pends on the initial state of the model which is the

current state of the plant. In general, measurements

are disturbed by noise or are missing, so that a state

estimation algorithm is needed to determine the ini-

tial states under consideration of the past record of

measurements.

3.2.1 Python Scripting

The python script for optimization with JModeli-

ca.org looks as in Figure 7.

This scheme describes the NMPC loop with two

dynamic models – one model called optimization

model, the other real plant model. The real plant

model illustrates the real plant behavior and is more

detailed than the optimization model. In future the

real plant model will be replaced by measurements

of the real plant.

The NMPC loop starts with the generation of an

initial trajectory for the optimization. As an alterna-

tive the optimization can be initialized with an opti-

mization result too. The initial trajectory is generated

by simulating a FMU of the optimization model.

The second step is to solve the optimization prob-

lem from t to t+H, where t is the actual time and H

the length of the finite optimization horizon (see

Figure 8). The optimization horizon is divided into N

steps, but only the first control signal is applied to

real plant model and the model is simulated to get

the new state of the plant. The following step is the

state estimation which is explained in more detail

below. After the initial state of the model is updated

the optimization horizon is moved and the optimiza-

tion is solved again from t= t+h (h= H/N) to t+2*h.

All steps will be repeated until the final time of the

optimization t_opt_end is reached.

Figure 7: Steps written in Python performing NMPC

with state estimation

Simulate optimization model over complete opti-

mization horizon to generate initial trajectory for

optimization

At time t: Solve optimal control problem over a

finite horizon H with N steps

Apply first optimal control u[0] to real plant model

Simulate real plant model from t to t+h with calcu-

lated value of optimal control

Estimate the current state of x (t+h) and initialize

the states of the optimization model

Shift time and restart with the second step.

Session 5B: Power, Energy & Process Applications 1

DOI
10.3384/ECP14096777

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

781

Figure 8: NMPC scheme

The strategy of Extended Kalman Filter (EKF) is

used for state estimation. The Kalman filter origi-

nates from probability theory and it is well estab-

lished that the Kalman filter is the optimal state es-

timator for a linear system affected by white noise.

The Kalman filter minimizes the estimation error by

considering past data of the system. This can be de-

scribed in a recursive way which is convenient for

implementation purposes [15]. Concerning the nota-

tion, corresponds to the estimation of x at

time = t+1 given the information at time = t.

The setup of EKF is according to Figure 9. The

estimation consists of two main steps; the prediction

and the correction. In the prediction step, the state

values at time t+1 are estimated from the system rep-

resentation (). The covariance matrix of the

estimation error at the prediction step () is also

updated in this step.

In the correction step, the Kalman gain () is

updated. It is then used to derive the corrected state

estimation () by combining the result of pre-

diction step and the latest plant measurements ().

The covariance matrix for the estimation error at the

correction step (Pt+1|t+1) is also updated here. The

steps are described in more detail below.

Figure 9: Structure of EKF, where ref corresponds to

the control reference, u to the control signal, and x to

the state estimation at different stages and y to the real

plant measurements.

The EKF is an extension of the Kalman filter for

nonlinear process models and the approach is basi-

cally the same as in the linear case, with an addition-

al linearization to get approximations of and

 matrices (using standard notation for linear

systems), which are used by the filter. The lineariza-

tion step was realized with the JModelica.org library

pyjmi.linearization.

Prediction:

 By simulating a FMU of the optimi-

zation model.

 By linearizing a JMU of the optimi-

zation model (at).

Correction:

 By linearizing a JMU of the optimi-

zation model (at)

 By simulating a FMU of the real

plant model.

Q and R represent the covariance matrices for

process and measurement noise.

For this example, we assumed that both noises are

uncorrelated and conform to a normal distribution. Q

and R are diagonal matrices. The entries on the diag-

onal of the covariance matrices Q and R are the vari-

Controller

Prediction step

Correction step

Process

EKF

u

t= t+1

ref

Industrial application of optimization with Modelica and Optimica using intelligent Python scripting

782 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096777

ances of each process variable and measurement and

are set to 1 in most cases. Q and R where approxi-

mated to be uncorrelated in time and the diagonal

elements where set to: one over the square root of the

standard deviation of the corresponding

state/measurement, in most cases to 1.

The EKF does not consider constraints, and this

has to be compensated for in an additional step (the

feasibility correction). This is important to note since

the optimization strategy is interior point optimiza-

tion, and no solution will be found if the starting

point is outside of the feasible region.

The strategy to considering this fact was simply

to use the prediction as state estimation, without the

correction step, since the prediction always will be

feasible.

3.2.2 Results of NMPC with State Estimation:

Extended Kalman Filter

In reality, there will be large differences between the

controller model and the real plant, this is natural.

However, for the evaluation of the implementation,

the models were kept basically the same, with the

same state representation. The optimization model

was augmented in order to compensate for the differ-

ences between the plant models. The differences

were approximated as constant disturbances, by in-

troducing the additional states d, here on referred to

as the disturbance states. These are unmeasurable

states of the real plant and their values can be esti-

mated by the EKF.

See a simple example of the augmentation below,

where x represent the original states, f(x, u) repre-

sents the process with input u and d represent the

disturbance states.

The NMPC loop combined with state estimation was

evaluated using the example of an enthalpy control-

ler of the heat recovery steam generator (HRSG)

(consisting of economizer, evaporator and superheat-

er, see Figure 10) of a combined cycle power plant.

Economizer

Evaporator

Superheater

flue gas

steam

water

Figure 10: Rough sketch of the system to be controlled.

Two disturbance states were added to the optimiza-

tion model (one to the flue gas mass flow rate and

one to the water pressure) in order to consider differ-

ences. Additionally a parameter related to the heat

transfer was modified to represent a typical modeling

error in addition to initial offsets for each state.

There were three objectives for the controller and

they were considered in the formulation of the opti-

mization problem:

1. Keep the steam temperature at the super-

heater outlet at desired set point.

2. Guarantee subcooling at the evaporator inlet

by keeping the temperature below a speci-

fied maximum value.

3. Have an adequate degree of superheating at

the outlet of the evaporator section.

Figure 11 and Figure 12 display the results for this

setup.

Figure 11: The progress of the state estimation, scaled

according to nominal value and time. The red line rep-

resents the real plant behavior. The top plot represents

one of the process states, the enthalpy at the inlet of

first evaporator. The bottom plot represents the intro-

duced disturbance state, with an initial error

Session 5B: Power, Energy & Process Applications 1

DOI
10.3384/ECP14096777

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

783

Figure 12: The control objective, scaled according to

nominal value and time. The top plot displays the tem-

perature set point control; the red line represents the

set point. The middle plot displays the sub cooling con-

trol; the red line represents the maximum value for the

temperature at the economizer outlet (pressure de-

pendent). The bottom plot displays the superheating

control, the red lines represents the mini-

mum/maximum degree of superheating.

The jumping in Figure 11 is related to the correc-

tion step of the EKF. Also worth noting is that the

disturbance state does not estimate the constant dis-

turbance to 0, and this is probably due to the intro-

duced modeling error. The disturbance state tries to

compensate for this as well.

The controller performance is quite satisfying, but

there are some offsets that should be considered in

the future work with optimization problem formula-

tion. The reason for the offset can for example be

related to the fact that the plant did not reach steady

state within the time frame for the experiment. It is

not clear from Figure 11, but it is however the case.

Evaluating the performance for a longer time might

get rid of the offset, but this was not possible to real-

ize at the time of the application evaluation because

of some memory leaks. Modifications to the objec-

tive function could be increasing the weight on the

elements in the objective function related to set point

deviations.

3.3 Parameter estimation

Parameters are typically estimated by some form of

least squares. This method minimizes the sum of the

squared discrepancies between measurement and

expected value. M is the number of measurements

and N the number of discrete time steps.

      














N

i

M

j
ji

meas
ji itXX

1 1

22
,,min

The default algorithm for solving optimal control

problems and parameter estimation problems in

JModelica.org is the collocation algorithm. For our

application we used the Nelder-Mead method, a heu-

ristic search method using the concept of a (N+1)-

dimensional simplex, where N is the number of es-

timated parameters. These kinds of derivative free

algorithms are implemented in JModelica.org ([2]).

The Nelder-Mead algorithm was the preferred

choice, although this method is quite slow, but has

the best convergence behavior especially for many

measurements and a lot of parameters.

3.3.1 Python Scripting

As the Nelder-Mead method is already implemented

in JModelica.org as described in [9], the python

script is quite simple. In a first step all measurements

are imported from .mat file. Then the Nelder-Mead

function nelme is called which solves the optimiza-

tion problem and uses the defined objective function

as input.

3.3.2 Results of Parameter estimation

A parameter estimation of the Modelica model for

optimizing the start up process of a combined cycle

power plant in 3.1 has been implemented.

The real plant measurements were given for a period

of 1h. The data were loaded in python as .mat file.

The gas turbine power, the gas turbine mass flow,

the injection mass flow and the back pressure meas-

urement were set directly as boundaries of the mod-

el, the other measurements (wall temperatures, fluid

temperatures and pressure) are used to minimize the

error between the measurements and their simulated

values.

The algorithm was tested for two measurement

sets to verify the result, one for a hot start and one

for a warm start of the power plant. As expected the

estimated parameters have smaller differences, but

have equal dimensions.

Figure 13 shows the simulation result with origi-

nal and optimized parameters compared to measure-

ments. As can be seen, the simulation result with the

optimized parameter fits better to the measurements.

Nevertheless there are still differences between the

model and the real plant behavior. Uncertainty of

measurements, not modeled effects and components

are some reasons for the deviations.

Industrial application of optimization with Modelica and Optimica using intelligent Python scripting

784 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096777

0.6

0.65

0.7

0.75

0.8

0.85

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.6

0.7

0.8

0.9

1

1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
Figure 13: Simulation result with original parameters

(green) optimized parameters (blue) and measure-

ments (red). The top plot displays the wall temperature

of the separator; the middle plot displays the reheat

mass flow and the bottom plot the outlet temperature

of the first superheater.

4 Summary

This paper shows how different industrial optimiza-

tion applications can be solved combining Modelica

and Optimica with the scripting language Python.

Three different optimization tasks have been consid-

ered to improve the dynamic processes in a com-

bined cycle power plant: offline optimization of the

start-up process, online enthalpy control of the

HRSG and parameter estimation for the start-up op-

timization.

All optimization tasks have been formulated with

Optimica based on Modelica models. For pre- and

post processing issues and interaction of JModeli-

ca.org and the Modelica models, the scripting tool

Python was used.

As shown in section 3 ‘Case studies’, for complex

optimization techniques like NMPC with combina-

tions of several optimization and simulation steps,

Python is ideally suited. For industrial applications

of power plant sector the definition of such control-

lers inside the Modelica model is not desired and

unnecessary since other interfaces (e.g. connection to

database) have to be realized additionally.

The work presented in this paper is one step towards

a complete online-optimization tool chain for

NMPC.

5 Acknowledgements

The German Ministry BMBF has partially funded

this work (BMBF funding code: 01IS12022A) within

the ITEA2 project MODRIO [7]. Modelon’s contri-

bution to this work was partially funded by Vinnova,

through the ITEA 2 project MODRIO.

References

[1] JModelica.org, http://jmodelica.org/,

viewed 2013-12-05.

[2] Python Software Foundation. Python Pro-

gramming Language - Official Website,

http://www.python.org/, 2012, viewed

2013-12-05

[3] A. Johnsson, Nonlinear Model Predictive

Control for Combined Cycle Power

Plants, Master’s Thesis, Lund University,

Department of Automatic Control, 2013.

[4] C. Andersson, S. Gedda, J. Akesson, S.

Diehl, Derivative-free Parameter Optimi-

zation of Functional Mock-up Units, 9
th

International Modelica Conference, Mu-

nich, Germany, 2012.

[5] Lie, B., Haugen Finn, Scripting Modelica

Using Python, Telemark University Col-

lege, Porsgrunn, Norway, 2012

[6] A. Lind, E. Sällberg, S. Velut, S. Gallardo

Yances, J. Åkesson, K. Link: Start-up Op-

timization of a Combined Cycle Power

Plant, Proceedings of the 9th International

MODELICA Conference, September 3-5,

2012, Munich, Germany

[7] https://www.modrio.org/

[8] https://openmodelica.org/

[9] J. Åkesson, Optimica—An Extension of

Modelica Supporting Dynamic Optimiza-

tion, 6th International Modelica Confer-

ence 2008, Modelica Association, March

2008.

[10] GnuPlot, http://www.gnuplot.info/,

viewed 2013-12-05.

[11] MatPlotLib, http://matplotlib.org/, viewed

2013-12-05.

Session 5B: Power, Energy & Process Applications 1

DOI
10.3384/ECP14096777

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

785

[12] SciPy, http://www.scipy.org, viewed

2013-12-05.

[13] Numpy, http://www.numpy.org/, viewed

2013-12-05.

[14] The JModelica.org User Guide,

http://www.jmodelica.org/api-

docs/usersguide/JModelicaUsersGuide-

1.11.0.pdf, viewed 2013-12-05.

[15] E. Haselting, J. Rawlings, A Critical

Evaluation of Extended Kalman Filtering

and Moving Horizon Estimation,

http://jbrwww.che.wisc.edu/tech-

reports/twmcc-2002-03.pdf, 2003, viewed:

2013-05-07.

[16] The FMI-standard, https://www.fmi-

standard.org/, viewed 2014-01-21.

Industrial application of optimization with Modelica and Optimica using intelligent Python scripting

786 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096777

