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Abstract

A combined cycle power plant are modeled and con-
sidered for calibration. The dynamic model, aimed for
start-up optimization, contains 64 candidate parame-
ters for calibration. The number of parameter sets that
can be created are huge and an algorithm called sub-
set selection algorithm is used to reduce the number
of parameter sets. The algorithm investigates the nu-
merical properties of a calibration from a parameter
Jacobean estimated from a simulation of the model
with reasonably chosen parameter values. The cali-
brations were performed with a Levenberg-Marquardt
algorithm considering the least squares of eight output
signals. The parameter value with the best objective
function value resulted in simulations in good compli-
ance to the process dynamics. The subset selection
algorithm effectively shows which parameters that are
important and which parameters that can be left out.

Keywords: Combined Cycle Power Plants; Start-
up; Calibration; Parameter Selection

1 Introduction

Increasing environmental awareness has resulted in
more demanding requirements. Energy supply is get-
ting more attention and more and more wind turbines
and solar power stations are built to adapt to a more
environmentally friendly world. The challenge how-
ever is that the sun doesn’t always shine and the wind
doesn’t always blow. Combined cycle power plants
(CCPP) work as a good complement, because of its
fast startup and shutdown time. Furthermore, the
CCPPs have high thermal efficiency and are relatively
environmentally friendly [1].

The market energy price fluctuates every day, which

affects the profitability of the CCPPs. Because of this
it is of importance to adapt to the market and be able
to quickly start up and shut down the process. A quick
start-up is important because energy is not produced
until the gas turbine reaches full speed and is synchro-
nized to the grid. However, this cannot be done too
quickly because a rapid temperature change wears out
sensible parts. The startup follows three phases: the
first to accelerate the gas turbine to full speed, the sec-
ond to increase the load of the gas turbine and the third
to drive the steam to the steam turbine. The model of
this work focuses on the second part which is the most
critical during a startup. Sensible parts as the drum
after the evaporator and the header of the superheater
are important to model for a successful startup opti-
mization. A model was therefore set up aimed for op-
timization of the startup, considering the temperature
gradient in the sensible parts to estimate the tensions.
The model has previously been used in optimizations
[2, 3]. The startup of combined cycle power plants has
been optimized in several studies before [4, 5, 6, 7, 8].

Accurate modelling of the CCPP is a difficult task,
which if successful can cut expenses. This requires
a good calibration of the model to make the discrep-
ancy to the real process dynamics as small as possi-
ble. The main purpose of the calibration is to enable
a valid model for optimization of startups. The pa-
rameter estimation is performed using a Levenberg-
Marquardt algorithm, which effectively uses the pa-
rameter Jacobean to find the optimum.

A model usually contains many parameter candi-
dates for calibrations. Estimating many parameter si-
multaneously leads to ill-conditioned calibration prob-
lem due to dependency between the parameters, that
make convergence bad and with wide confidence in-
tervals as a result. A parameter-selection algorithm,
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called subset selection algorithm (SSA) is proposed
that ranks the parameter by two properties, ¢ and k
[9]. The parameter ¢ is correlated to the size of the
confidence regions for a parameter set and x is a mea-
sure of how well-conditioned the parameter Jacobean
for a parameter set is. The algorithm that significantly
reduces the number of parameter sets to study, has
recently been proven to work good for a model of a
polyethylene plant [10].

2 Theory

2.1 Differential algebraic equation systems

The general non-linear index-1 differential algebraic
equation (DAE) form is defined by

0 =F(x,x,w,u,p) (D
y = g(X,x,w,u,p) 2)
X(l‘o) =X (3)

where X, w, u and p are vectors denoting state and
algebraic variables that describe the inputs and param-
eters of the model. In Eq 2, the output variables of the
system that is subject to calibration are denoted y. The
initial state is defined by x¢ and is expressed in Eq 3.
To solve the steady-state problem the state derivatives
x are set to 0 and x and w are solved to fulfill Eq 1.

2.2 Non-linear regression methods for differ-
ential algebraic models

Regression methods are roughly classified into two
broad categories: gradient methods and direct-search
methods [11]. The former depends on accurate pa-
rameter gradients, while the latter does not. Gra-
dient methods include the Gauss-Newton Method,
the steepest descent method and the Levenberg-
Marquardt method, while direct-search include the
simplex method, differential evolution algorithms and
pattern search [12, 13]. The Gauss-Newton method
gives the best results when gradients are available [14].
The Levenberg-Marquardt method is a more stable
variant of the Gauss-Newton method [12] and can be
used to solve the problems of estimating dynamic pa-
rameters, where the Newton step Ap is calculated from
(J'WJ + 5diag(J"W))) Ap=F"W(F—-y) @
where ¥ is the measurements for the output and & is
a Levenberg-Marquardt parameter, which controls the
allowed step length and is updated in each iteration,

based on the quality of the Newton step. The sensitiv-
ity matrix is defined as the parameter Jacobean matrix

_dy

J—dp

®)
and was estimated with finite differences using the
central approximation.

A single shooting approach is common to solve
problems of estimating dynamic parameters [15]. It
starts with a guess of the parameters. The dynamic
model is then simulated, and the parameters are up-
dated iteratively by a regression method, such as
Levenberg-Marquardt method.

2.3 Statistics

Confidence regions are calculated to assess the quality
of the parameter estimates. A confidence interval of
1 — B, with n, number of measurements and 7, number
of parameters, is estimated from

p*iSpTinv(ﬁ/zany _np) (6)

and means that there is a probability of 1 — f3 that the
true parameter lies within the estimated interval. Here,
p* is the calibrated parameters, Tj,, is the inverse of the
Student’s T test and s, is the estimated standard error
of the parameters defined as

Spk - (%)k]ﬁ fOr k = 1,...,np (7)
where ¥ is the covariance matrix calculated as
x=0>(JWJ) . (8)

where 62 is the error variance and can be estimated by

©))

ny —np

and the diagonal weighting matrix, W, used to scale
the outputs, is defined as

)71*2 ()2 e 0
0 $° -~ 0
w=| . 7 (10)
0 0 Il

2.4 Subset selection algorithm

The numerical properties of a parameter estimation
can be estimated from the sensitivity matrix, J. An
algorithm is suggested [9] that investigates parameter
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sets from a nominal operating point, and ranks the pa-
rameter sets according to two quantities: the condition
number, k, and the parameter selection score, &. Here,
Kk is defined as the ratio between the largest and small-
est singular value of J, and « is defined by o(p) = |v|,
where 0 is the scaled standard error for the parameters

V; = Spi/ i (11)

The quantities k and & are used to estimate the param-
eter dependencies and the uncertainties in the param-
eters. A low value of o shows that the estimated pa-
rameters have been accurately determined, while a low
value of k shows that the calibration problem are well
conditioned. Both o and the confidence interval are
calculated from the standard error of the parameters
and the quantities are closely related. A low value of
o indicates narrow confidence intervals. The parame-
ter K is a measure of how well the calibration problem
is conditioned. Low values are preferable because it
indicates that the parameters are independent of each
other, while high values indicates a difficult calibra-
tion, where an inverse of the sensitivity matrix does
not exist or can only be calculated with low accuracy.

Both a and x can be calculated without any calibra-
tion of the model, by setting some reasonable param-
eter values, referred to as nominal values, and deter-
mine the sensitivity matrix from a simulation. From
the full sensitivity matrix, @ and k can be calculated
for every parameter subset. The sensitivity matrix for
a parameter subset is created by taking the correspond-
ing columns from the full sensitivity matrix.

fori=1,...,n,

3 Methods

3.1 Modelling Languages and Tools

The mathematical model has been implemented in
Modelica [16], which is a high-level language for de-
scribing complex physical systems, supporting object-
oriented concepts such as classes, components and in-
heritance. It can also encode textbook-style declara-
tive equations. This modelling paradigm has signifi-
cant advantages over the block-based paradigm that is
often used in the context of physical modelling. In par-
ticular, acausal modelling systems do not require the
user to solve the derivatives of a mathematical model.
Instead, differential and algebraic equations may be
mixed, which then typically results in a differential al-
gebraic equation.

The calibrations in this paper have been performed
using JModelica.org, which is a Modelica-based open-
source platform targeted at dynamic optimization
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Figure 1: A schematic figure of the process.

[17]. The optimization is enabled by an extension to
Modelica, Optimica, which strengthens its optimiza-
tion capabilities by adding a small number of con-
structs. JModelica.org uses an interior point algo-
rithm, IPOPT, to solve for feasible solutions, that fulfil
the equation system[18]. Further, JModelica.org uses
the Assimulo package [19], which interfaces the IDA
solver from the Sundials suite [20].

To handle the high number of calibrations in this
work in a reasonable time, a simple parallelization was
performed. A simulation can only utilize one proces-
sor core, while it takes several simulations in every
iteration of a calibration. By distributing the simula-
tions with the python package subprocess, all eight
processor cores could be utilized.

3.2 Mathematical plant model

A simple model scheme is found in Figure 1. The
model has previously been used in startup optimiza-
tion where it is described in more detail[2, 3]. The
model, consisting of both differential and algebraic
equations, has been derived from a combination of first
principles and semi-empirical relations. It is focused
on the heat recovery steam generator (HRSG) where
the water side, indicated with blue arrows, are mod-
eled by dynamic balance equations. The heat from the
gas turbine (GT), shown with a red arrow, is statically
modeled from the temperature (#9) and the mass flow
(u10) of the GT. The water side is modeled as two dif-
ferent streams, one through the high pressure super-

DOI
10.3384/ECP14096809

Proceedings of the 10*" International ModelicaConference
March 10-12, 2014, Lund, Sweden

811



Parameter Selection in a Combined Cycle Power Plant

Notation Description
uj RH inlet enthalpy
uy IP mass flow
u3 water injection flow
uy IP back pressure
us water injection /3
ug water injection Iy
uy HP back pressure
ug HP mass flow
ug temperature GT
uio mass flow GT

Table 1: A list of the inputs used.

heaters (HPSHs) and the other through the reheaters
(RHs). The water is evaporated in the evaporator and
going through the drum before it is superheated in
three steps, HPSH1, HPSH2 and HPSH3. Finally the
steam is led through the header and continues to the
high pressure steam turbine. The drum and the header
are similarly modeled as a volume, where the wall are
subject to high stress during transients that needs to be
constrained. The wall is spatially discretized so that
the temperature gradient can be modeled, which is an
indicator of the stress. The right blue line is going
through the three reheaters RH1, RH2 and RH3 and
continues to the intermediate pressure steam turbine.
There are also four water injections modeled, shown
in boxes in the Figure, where the first /; is located be-
tween RH2 and RH3 and I,_4 are located after RH3,
between HPSH2 and HPSH3 and after the header, re-
spectively. In the model there are also several valves
to control the flow rates. The temperature sensors are
also modeled to account for sensor lags.

The model is simulated with ten inputs following
measurement data and are shown in Table 1. Three
of the inputs are mass flows of the water injections,
two describe the temperature and mass flow of the ex-
haust gas from the GT and five describe the state of
the water on the HPSH and RH side. The mass flow of
the exhaust gas from the GT are not measured directly,
but calculated from balance equations. Eight objective
signals are considered in the calibration and are shown
in Table 2. The input and objective signals are also
shown in Figure 1.

There are 64 potential parameters to calibrate in the
model. The parameters are roughly divided in eight
categories, see Table 3. Heat transfer coefficients are
denoted as k;,,, describing the transfer between the ex-
haust gas and metal wall, k,,, describing the heat
transfer between the metal wall and the cold water,
and k, describing either the heat transfer in the sensors
or the heat transfer in the metal walls of the header

Notation Description
T temperature before /;
T temperature after /;
T3 temperature before /o
Ty temperature before I3
Ts temperature after /3
T temperature before Iy
T; temperature after Iy
P pressure evaporator

Table 2: A list of the objective signals used.

k kin - kow  mpgyo  mre v cap ky

Header 1 7 15
Evaporator 3 17 2 20

Drum 10 8 4
SH 9 5 18 21
SHI 28 22 56 62
SH2 29 23 57 63
SH3 30 24 58 64
RH 12 6 19 11
RHI 34 25 59 31
RH2 35 26 60 32
RH3 36 27 61 33

13,37,38,
39,4041

valves

16,49,50,
51,52,53,
54,55

Sensors 14,4243,
44,45 46,

4748

Table 3: The parameter used in the SSA analysis.
Merged parameters are indicated in bold.

and drum. There are two categories of masses, de-
noted as mp,o for water volumes and mp, for iron
walls. The last categories are the fluid volume V for
the header and drum and the heat capacity of the sen-
sors, cap. Last category is k, that affects the dynamics
of the valves, that is modeled with a constant pressure
drop. There are seven sensors measuring the outputs
Ti_7, each with two parameters and paired as {42,49},
{44,51}, {43,50}, {45,52}, {47,54}, {48,55} and
{46,53}.

Some parameters describe the same kind of param-
eter in different places of the model. For example, in
the superheaters SH1, SH2 and SH3, the k,,, parame-
ter is described with the parameters 22,23, 24 that has
the same nominal values. A merged parameter is intro-
duced that enables a reduction of parameters, which is
important in calibration problems. For k,,, in the su-
perheaters, the parameter 5 is a merged parameter. Set-
ting this parameter means that the children parameters
22,23 and 24 gets the set value. There are 11 merged
parameters in the analysis, where ki,, kour, mp,0 and
mpr, are set by the parameters 9,5,18,21 for the su-
perheaters and the parameters 12,6,19,11 for the re-
heaters, the parameter 13 sets all the other k, parame-
ters and k and cap for the temperature sensors are set
with the parameters 14 and 16. A merged parameter
can not be in the same parameter set as its children.
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Naturally, many of the parameters are highly corre-
lated, such as k;, and k,,,. For convenience the param-
eter set {p1,p2, p3} is denoted as p; 23

4 Calibration methodology for large-
scale systems

4.1 Calibration procedure

The calibration is made by minimising the objective
function described by a least square formulation of the
error between the plant data and the model response. If
all parameters are included in the calibrations, it leads
to badly conditioned problems. The number of param-
eter sets that can be combined grows rapidly with the
number of parameters. To reduce the number of pa-
rameters to estimate in the model a parameter selec-
tion algorithm called subset selection algorithm was
used. Information from the sensitivity matrix is used
to avoid ill-conditioned parameter estimations and to
find parameter sets that can be determined with low
parameter uncertainty.

The calibration procedure is solved by a single
shooting procedure, where the model is simulated for
every iteration of parameters. An attempt is made in
each iteration to find the initial states for the updated
parameters. The system simulation then proceeds dur-
ing the whole start-up. The initial states are found by
solving a steady-state problem, defined in Egs. (1)-(3)
and with x = 0. The system is subsequently simulated,
with the inputs u following the measurement data. The
parameters can be updated by minimising the objec-
tive value defined as the weighted sum of squares of
the residuals

1

0(p) =) (3 —y(u,p)) W(F:i —y(1,p)),

i=1

12)

where 7, is the number of time points and y,(¢;,p) is
the model outputs from the simulation at time #;. The
calibration problem is solved iteratively by updating
the parameters using the Levenberg-Marquardt algo-
rithm, described in Section 2.2. The dynamic calibra-
tion is formulated as an optimization problem

min Q(p)
P

subject to Egs. (1) —(3)
Xinin S X S Ximax
Winin S W S Winax

In this work, only one data set was used for calibra-
tion and no validation was performed. In a previous
work, several calibration and validation data sets were
used with a similar approach on another model, which
showed good compliance [10].

4.2 Reduction of parameter sets

Models often have many potential parameters to cal-
ibrate, where many of the parameters are dependent
of each other. If all parameters are included in the
calibration it results in parameter Jacobeans that are
highly ill-conditioned and a calibration that is impos-
sible to solve. It is desirable to choose a subset of the
parameters that are independent of each other, mini-
mizes the objective function and with parameters that
can be determined with good accuracy. The number
of parameter combinations increase rapidly with the
number of parameters and the exploration of all pa-
rameter sets is heavy computationally. An approach
to reduce the parameter sets is suggested, where the k
and o numbers of the SSA algorithm are used to rank
the parameters. The selection method consists of two
loops, the SSA loop and the calibration loop, each one
consisting of three base parts: combination, evaluation
and filter blocks, Figure 2. The blocks are defined as
follows:

Combination is the process of taking an input pop-
ulation P;, that contains the np;, parameter sets
{pi]n, P ’”} and mixing it with all npy parame-
ters Py = {p1,...pup, } to create a new parameter
set population P, that contains parameter sets
with one more parameter than the parameter sets
of the input population. The input population is
empty before the first iteration, and thus the out-
put population will contain one parameter set for
every parameter in Py. P;, is not empty before
the next iteration, and thus the p}, will enter the
output population as npg parameter sets defined

by {{pl.,p1},-s{P,Pup } }» and the parame-
ter sets p,, .., P;r™ will be combined in the same
way. The same parameter set can be created from
two different parameter sets in the input popula-
tion, and thus an operation is carried out to re-
move all duplicates. The maximum number of
parameter sets in the output population is npgnp;,,
but this may be reduced when duplicates are re-
moved. There are two combination blocks, Block
1 (SSA loop), where P, is created and Block

4 (calibration loop), where P52 is created.

SSA Evaluation evaluates o and x values for each
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parameter set of the input population as defined in
Section 2.4, and calculates a SSA score 0, given
by 0 = lga + 1gk, that is later used in the filter
block to determine the best parameter sets in the
SSA loop.

Calibration is the step where calibrations are made
for all parameter sets in the input population, that
consists of both P,y and P.,n. All parameter
sets are calibrated and the objective value that
measures the deviation between model and mea-
surements is returned. The calibration step is the
most computationally expensive step.

Filters are used to reduce the number of parame-
ter sets, which otherwise would increase rapidly.
There are three filter blocks, one in the SSA loop
and two in the calibration loop. The filter block
takes a population of parameter sets, a score that
has been calculated to rank the parameter sets,
and a cutoff that defines how many parameter sets
should pass. In Block 2 and 5, 0 is used as score
and nggaq 1s used as cutoff for Pgga, 11,41 for Peas
and n.4n for P.yn. In Block 8, Q is used as score
and ng is used as cutoff. The choice of the cutoffs
are arbitrarily, but should not be chosen too small
for a good analysis.

1

Combination

Combination

VPeomb2

lﬂ’(umb]

SSA filter
Y Pear2

Calibration loop

Calibration

lQ

8

Py |
The

Figure 2: The SSA selection procedure used.

SSA evaluation is relatively cheap, but the number
of parameter sets increase rapidly as n, increases.
The number of parameter sets increases as the bi-
nomial coefficients ('Z"), which for npy = 64 are

{64,2016,41664,635376,7624512,...}. Setting a fil-
ter cutoff limits the population that must be examined
to ngsanpg per iteration instead. The number of cali-
brations are dependent of npy and the filters n.,; and
Nnea2- In the first iteration, n., calibrations were per-
formed and in the following rounds, 1.4 + neqrn cali-
brations are performed.

In this work, the cutoffs have been chosen to ngsy =
300, neqn = 5 (10 in the first iteration), n.4» = 4 and
ng = 1 in the work presented here. In this work the
loops were iterated for parameter sets ranging from
one parameter to seven parameters. The total num-
ber of calibrations performed is around five in the first
iteration and nine in the rest, totally 59 calibrations.

5 Calibration results

5.1 Calibration

The calibration of the model was done for many pa-
rameter sets in the calibration loop of the SSA method.
The parameter set with the best objective value with
seven parameters, pe 13 16,17,22,24,47, 18 called C3 and
is shown in Figure 3. The parameters in the set con-
sist of four k,,, parameters for SH1, SH3 and all RHs,
one valve parameter and two sensor parameters. No
parameters for masses, volumes and heat transfer in
walls and gas side are represented. The calibration
reduces the objective function value from 1.85 with
nominal parameter values to 0.585 and improves all
eight objective signals. The largest improvements are
for T\, T4,Ts and P, with 72%, 70%, 87% and 74%
reduction.

In Table 4 the calibrated parameters with confidence
interval for the three calibrations C;_3 are compared.
The confidence intervals are narrow for all parameters,
except for pyy that is k,,, in SH3. This parameter af-
fects mainly the objective Ty, which transient for the
nominal parameter value are far below the measure-
ments. To increase the temperature, the obtained pa-
rameter value is therefore very high, with the values
64.9, 79.3 and 79.5. The confidence intervals are al-
most as big as the parameter which is a very inaccurate
parameter. The o and k values are also notably worse
at the optimum.

5.2 Parameter selection

The SSA analysis was performed for the parameters
and is shown in Figure 4. The evaluated parameter
sets results in dot clouds that move upwards and to
the right, the more parameters that are added. The dot
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Figure 3: Simulation profiles from the best calibration
for all states in the objective. The measurement data
(dotted line) are shown together with the simulation
with nominal (solid line) and optimal (dashed line) pa-
rameter values are shown in solid and dashed line.

parameter C Cy Cs

D6 3.89+0.45 4.28+0.62 4.58+0.71

P13 1.97+0.027 2.17+£0.043  2.16+0.042
P16 0.92+0.023  0.964 £0.027
P17 0.66+0.020 0.665+0.020
P2 0.38+0.014 0.375+£0.014
D23 0.54+0.021

D24 64.9+£46.2 79.3+78.7 79.5+79.5

P47 9.61+0.078 1.26 +0.069

Table 4: Calibrated parameter values with a 95% con-
fidence interval for calibrations C; and C,. All param-
eters are scaled with the nominal parameter value.

3 p=1 np =2
2
~
1
0 foe %
3)1,,:3 np =4
2
~
1
0 » LS
3 np =35 np =6
2
~
1
0 % X
3np:7 np, =8 x
2
~
1
0 X -
1 0 1 2 1 0 1 2
o o

Figure 4: The SSA analysis for n, from 1 to 8. The
dot clouds move to the right and up when parameters
are added. Parameter sets with best 0 is marked as (o)
and parameters from the best objective loop (x)

clouds are created from the SSA loop of the SSA anal-
ysis, with 64 parameter sets for n, = 1 and 64*300
parameter sets for n, from two to eight. The parame-
ter sets with the lowest values of 6 (P.,) are shown
with black dots and are located in the lower left corner
in each figure. Those parameter sets were calibrated
and the objective values are shown in Table 5. The
objective value improves when parameters are added
for n,, from one to five. After that the calibration gets
worse for n;, equal to six and seven.

In the calibration loop of the SSA analysis, the best
parameter sets were combined with new parameters to
create P.,» that were calibrated and is presented in
Table 6. Those parameter sets, marked with crosses
are also located in the lower left corner for n,, from two
to seven. The objective values of this loop gets better
for every iteration as new parameters are added to the
best parameter set of the previous iteration until eight
parameters are reached where the calibrations do not
converge. Also the o and k values for those parameter
sets are very bad.

In Table 5 there is 20 unique parameters {5, 6, 12,
13,14, 16, 17,22, 23,24, 26, 43, 45, 46, 47, 48, 52, 53,
54, 55} where {5,6,12,13,14,16} are merged parame-
ters. Seven of the parameters, {5,6,17,22,23,24,26}
are ko, parameters, while only one parameter, {12}
is a k;, parameter, indicating that the parameters for
heat transfer between the metal wall to the cold wa-
ter have greater impact than the heat transfer between
the exhaust gas and the metal wall. No drum or
header parameter are visible in the best parameter
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Table 5: The calibration results from the left loop of
the SSA analysis, sorted by 6. *C;  + The 8" value

of 6

parameters logjg(e)  logjg(x) 6 obj
s -1.87 0 -1.87 1.77
P14 -1.65 0 -1.65 1.77
Pl6 -1.65 0 -1.65 1.77
I -1.56 0 -1.56 1.85
P -1.55 0 -1.55 1.85

P24 -1.46 0 -1.46 1.03
P6.23 -1.51 0.0369 -1.48 1.79
P6,22 -1.54 0.0947 -1.45 1.79
P6,17 -1.54 0.109 -1.43 1.8
Ps.14 -1.7 0.31 -1.39 1.73
Ps.16 -1.7 0.31 -1.39 1.73
P6.23.24 -1.67 0.152 1.52 0.832
P6.,17.24 -1.69 0.19 1.5 0.895
P6.24.47 -1.64 0.147 1.49 0.899
P6.24.54 1.64 0.148 1.49 0.899
P6.22.24 -1.68 0.192 1.49 0.808
P6,17.24,47 -1.6 0.225 1.38 0.895
P6,17,24.54 -1.6 0.225 1.38 0.895
P13,26,46,48 1.44 0.0756 1.36 1.53
P13,26,46,55 1.44 0.0756 1.36 1.58
P13,26,48,53 1.44 0.0761 1.36 1.53

*P6.13,23,24.47 -1.5 0.227 1.28 0.675
P6,13,23,24,54 -1.5 0.227 1.28 0.675
P12.13.46.48.54 141 0.144 1.27 1.53
P12.13.46.54.55 1.41 0.144 1.27 1.58
P12.13.46.47 .48 1.41 0.144 1.27 1.53
P12,13,45,46,48,54 1.34 0.202 1.52
P12,13,45,46,54,55 1.34 0.202 1.57
P12,13,45,48,53,54 1.34 0.202 1.52
P12,13,45,53,54,55 1.34 0.202 1.56
P12,13,45,46,47,48 1.34 0.203 152
P13,26,43,4546,48,54 -1.27 0.264 -1.01 1.49
P13,26,43,45,46,54,55 -1.27 0.264 -1.01 1.54
P1326,43,4548,53,54 -1.27 0.264 -1.01 1.49
P13,26,43,45,53,54,55 -1.27 0.264 -1.01 1.54
P1326,43,4648,52,54  -1.27 0.264 -1.01 1.5

sets of the analysis. For the valves, only the merged
parameter {13} is visible in the tables. There are
many sensor parameters visible in the result, namely
{43,45,46,47,48,52,53,54,55}, corresponding to the
sensors for 71 4567

In Table 6 there is only 11 unique parameters
6,13,14,16,17,22,24,47,48,54,55. All of those are
not surprisingly also visible in Table 5, because they
are partly derived from the best parameter sets of that
table.

The parameter set with the lowest objective value
for parameter sets with one parameter is pps with
QO = 1.03. This parameter is also visible for all of the
best parameter sets, even though the confidence inter-
vals are wide. The o and x values at the optimum
were much worse at the optimum than for the nominal
parameter values.

The parameter sets with ps7 and pss are replace-
able in several places, for instance in pg 222447 and
D6,22.24,54 that give the same objective value. Both of

Table 6: The calibration results from the right loop of

the SSA analysis, sorted by 8. ** Cy  ***(C;3

parameters logjo(a) logjo(k) 6 obj
P17.24 -1.36 0.119 -1.24 1.04
DP24.47 -1.28 0.0518 -1.23 1.04
P24.54 -1.28 0.0522 -1.23 1.04
P22.24 -1.36 0.125 -1.23 1
P6,22.24 -1.26 0.192 -1.07 0.808
P16,22.24 -1.29 0.263 -1.02 0.935
P14.22.24 -1.29 0.263 -1.02 0.935
P22.24.47 -1.22 0.204 -1.02 1
P6,22,24,47 1.16 0.24 -0.923 0.806
P6,22,24,54 1.16 0.24 -0.923 0.806
P6.13,22,24 1.15 0.256 -0.89 0.662
P6,17,22,24 1.18 0.299 -0.88 0.773
P6.13.22.24.47 1.08 0.262 -0.823 0.659
P6,13,22,24,54 1.08 0.262 -0.822 0.663
P6.13.16.22.24 1.11 0.389 -0.718 0.655
P6.13.14.22.24 1.11 0.39 -0.717 0.741

*P6,13,16,17,22,24 1.05 0.488 -0.563 0.583
P6,13,16,22,24,47 1.02 0.528 -0.487 0.655
P6,13,16,22,24,54 1.01 0.528 -0.487 0.655
P6,13,16,22,24,48 0.999 0.536 -0.463 0.666

HED6,13,16,17,22,24,47 -0.975 0.576 -0.398 0.585
P6,13,16,17,22,24,54 -0.975 0.576 -0.398 0.585
P6,13,16,17,22,24,48 -0.961 0.579 -0.383 0.598
P6,13,16,17,22,24,55 -0.961 0.579 -0.382 0.596

those are sensor parameters for output 75. Also the Tg
parameters p4g and pss seem replaceable, apart from
some small difference in objective value.

6 Discussion and summary

The objective function values became better when
adding more parameters, but reached a point where
adding of parameters made the calibrations too hard
to solve. The best parameter set (C3) chose parameters
from different parts of the model to minimize as many
outputs as possible in the objective function.

The trend in the calibrations is that the parameter
sets get harder to solve when more parameters are
added and take more iterations. For eight parame-
ters and more the calibrations fail to converge more
often. Apart from that the calibrations are more com-
plex when parameters are added, it is also harder to
find independent parameters for a larger parameter set.
Ill-conditioned calibration problems leads to parame-
ter steps that make the simulations infeasible.

The analysis shows that the k,,, parameters occur
more frequently than the k;, parameters and indicates
that the cold water side has greater impact of the model
than the exhaust gas side. This is probably because the
exhaust gas is only statically modeled in contrast to
the cold water side. The analysis also shows that some
parameters are replaceable, such as ps7 and ps4. Only
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one of the parameters are therefore needed for further
analysis.

The merged parameters performed well in the anal-
ysis where six of the 11 merged parameters appeared
in the best parameter sets. Merged parameters are ef-
fective for parameters that is expected to behave sim-
ilarly and keeps the number of parameters in the cali-
bration problem less.

The information to the SSA analysis is estimated
from uncalibrated parameters but give a good indica-
tion about the best parameter sets considering the o
and k values. The values are dependent of the parame-
ter values and will obviously change for the calibrated
parameter values, but hopefully not much. For most
parameter sets, the ¢ and x values stayed roughly the
same, but for parameter sets including p»4 resulted in
worse o and Kk values at the optimum. Still, the anal-
ysis highlights po4 as a crucial parameter, that can de-
crease the objective function value the most, but with
very wide confidence intervals as a result. A further
analysis is required to understand this behavior.

Both the SSA and calibration loop of the analysis
is dependent of the cutoff numbers for good perfor-
mance. The calibration numbers were consciously set
to low numbers, because of long calibration times that
were performed on a single computer. The numbers
can be set higher for a more thorough analysis if time
or a computer cluster is available. The result shown
here proves that satisfactory calibration results can be
reached even with low cutoff numbers.

The parameter estimation results are in good com-
pliance to the process dynamics. The subset selection
algorithm effectively shows which parameters that are
important and which parameters that can be left out.
Considering the few number of calibrations that were
performed, the result is satisfactory.
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