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Abstract 

For the 0D-1D modelling of thermal-hydraulics sys-
tems, it is common practice to use static mixing 
models to compute the mixing specific enthalpy in 
fluid junctions such as mergers or splitters. However, 
this simplification leads to a well known singularity 
when the mass flow rate inside the junction goes to 
zero. The origin of the singularity is explained, and a 
rigorous physical solution is proposed to eliminate 
the singularity. A prototype implementation has been 
developed in the ThermoSysPro library for power 
plant modelling that illustrates the interest of the 
proposed solution, shows the impact on the structure 
of the library and enables to evaluate the computing 
overhead with respect to several possible variants. 

Keywords: thermal-hydraulics; mixing models; con-
vection; diffusion; ThermoSysPro 

1 Introduction 

When modelling thermal-hydraulics at the system 
level, such as power plants, it is common practice to 
use static equations to compute fluid quantities in 
mixing equipments such as mergers and splitters. 
This simplification stems from the fact that the vo-
lume of mixing is often neglected in junctions, there-
fore eliminating the differential term in the balance 
equations. It also occurs when computing isolated 
operating points that only require static models. 

Neglecting diffusion is very common when one 
deals with large mass flow rates, as diffusion is only 
significant when mass flow rates approach zero. 
When diffusion is neglected, the only thermal phe-
nomenon remaining in the model is convection. 
However when mass flows go to zero, convection 
disappears. So if diffusion is neglected, when mass 
flow rates go to zero, as convection also disappear, 
there is no thermal phenomena left in the model, 
leading to a possible indetermination of the enthalpy. 
This indetermination results in a singularity when 

static models are used, because in such case there is 
no differential variable to act as a memory for the 
enthalpy when mass flow rates are equal to zero. 

In subsequent chapters, the mathematical origin 
of the singularity is explained. Then a rigorous ma-
thematical formulation is proposed based on physical 
insight to remove the singularity. The idea is to rein-
troduce diffusion in static mixing models. Finally, a 
performance benchmark is given, based on a proto-
type implementation in ThermoSysPro. ThermoSy-
sPro is a Modelica library developed by EDF for the 
modelling of power plants of all types [1]. 

2 Computing the state of a thermal-
hydraulics system 

As the objective is to find the origin of the physical 
singularity before giving a solution for removing the 
singularity, it is useful to understand how the physi-
cal state of a thermal-hydraulic system such as a vo-
lume is defined. 

A volume is an abstract physical component 
where incoming flows mix. Figure 1 features four 
incoming flows. Flows are positive when they enter 
the volume and negative otherwise. 

1Q
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3Q

4Q

1h

2h

3h

4h

 
Figure 1: volume 

 

In general, the state of a physical system is given 
by the set of independent physical quantities that 
completely define the state. There are many ways to 
choose the state variables for a given physical sys-
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tem. For a thermal-hydraulic volume a , a common 
choice is to use the average pressure aP  and the av-

erage specific enthalpy ah  inside the volume. Then 

the state of the volume a  will be defined if aP  and 

ah  can be computed. 

In the sequel, we are only interested in computing 

ah  which is called the mixing enthalpy in volume 

a . 
To compute ah , one must consider the neighbor-

ing volumes of a  which are collectively denoted b  
(see Figure 2). 

 

Volume a

Volume b2

Volume b3

Volume b4

Volume b1

11, bb hP

22 , bb hP

aa hP , 33 , bb hP

44 , bb hP

)( 1 abQ 

)( 2 abQ 

)( 3 abQ 

)( 4 abQ 

 
Figure 2: grid scheme 

 
Each volume is assumed to be in thermodynamic 

equilibrium, so that their thermodynamic state is 
physically defined. However neighboring volumes 
may have different physical states, so that pressure 
and temperature gradients may exist that cause mass 
and energy flows between neighboring volumes 
through their common limiting boundary. 

Mass flowing from volume b  to volume a  is 
denoted )( abQ  . Therefore )( abQ   is posi-

tive if the flow actually occurs from b  to a , and 
negative otherwise. So )()( abQbaQ  .  
Notice that the relation 

0)()(  abQbaQ  
is not a mass balance equation between volumes 
b and a , but merely states the fact that )( abQ   

and )( baQ   denote the same physical quantity 
with opposite sign conventions. 

The specific enthalpy of flow )( abQ   is de-

noted abh : . The meaning of notations is recalled in 

chapter 7. 
 

The dynamic mass and energy balance equations are 
given by 

 


b

aa abQ
dt

Vd
)(

)(
 

  a
b

ab
aaa WabJabQh

dt

uVd


  )()(
)(

:



  
)( abJ   is the energy flow through diffusion. 

)()( :: abTkAabJ abab           (1) 

The static mass and energy balance equations are 
obtained by eliminating the dynamic terms on the 
left hand sides. 

 
b

abQ )(0                            (2) 

  a
b

ab WabJabQh   )()(0 :     (3) 

As the quantity ah  does not appear explicitly in the 

static energy balance equation, it must be computed 
though the quantities abh : . So the relation between 

ah  and abh :  must be established. 

To that end, the fluid vein between volumes a  
and b  is considered (see Figure 3). 

 

Volume a Volume b

LP0P

dx

L0

)( baQ xQ

x

Figure 3: fluid vein 
 
The static mass and energy balance equations in the 
volume limited by dx  is 

x

Qx




0                                      (4) 







 








 x
x

xx W
x

T
kAQh

x
0              (5) 

Eq. (4) states that  xQ  is constant. Therefore: 

)()( abQbaQQx   

In order to find an analytical solution to Eq. (5), the 
following relation between xdh  and xdT  is consi-

dered:  
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xPx dTcdh                                (6) 

In the sequel, it is assumed that the relation given by 
Eq. (6) is valid (i.e. outside of the saturation line, for 
isobaric transformations, or for ideal gases, or when 
the contribution of the pressure variation to the varia-
tion of the specific enthalpy is negligible as com-
pared to the contribution of the variation of tempera-
ture). 
Under the additional assumption that 0xW , the 

energy balance equation writes: 

x

h

c

kA

x

h
baQ x

p

x












2

)(0            (7) 

Eq. (7) can be solved analytically [2]: 















L

x
P

ba
P

abPx

e
e

e
ehhehh

e
h )(

1

1
  (8) 

with  

)(
1

baQPe 


                         (9) 

Lc

kA

P 


                                  (10) 

abh :  is the value of xh  for 
2

L
x  : 

beaeab hPshPshh L  )()(
2:


         (11) 

with  

21

1
)(

x

e

xs





                             (12) 

 
Figure 4 gives a plot of ŝ . 
 

 
Figure 4: plot of ŝ  

 
If diffusion is neglected, then 0 , eP  

and abh :  becomes: 

baab habQshbaQsh  ))(())((:     (13) 

where s  is the step function: 














00

0

01

)( 2
1

xif

xif

xif

xs                          (14) 

This is the well known upwind scheme approxima-
tion for flow reversal. This relation is widely used, 
even if the assumptions used in this derivation are 
not fulfilled. 

Note that s  is discontinuous at 0x , whereas ŝ  
is continuous and differentiable everywhere. 

3 Origin of the singularity in static 
mixing models 

The objective of this chapter is to show that the sin-
gularity in static mixing models arises when diffu-
sion is neglected.  

So in the sequel diffusion is neglected, which 
means that 0)(  abJ . Also )( abQ   is de-

noted bQ  to simplify the notation. 

The mass and energy balance equations become 


b

bQ0                                (15) 

 
b

bab Qh :0                            (16) 

The value of the enthalpy 
abh :
 is given by the upwind 

scheme (see Eq. (13)): 

abbbab hQshQsh  )()(:                  (17) 

 
In the sequel, the following relations are used: 

xxx  )sgn(                            (18) 

)()()sgn( xsxsx                      (19) 

)(1)( xsxs                            (20) 
where sgn is the sign function. 

 
Then using Eq. (15), (16), (17) and (20) 

0)()(

)()(

)()(:



















 

b
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b b
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bbbbab

QQshhQQs

QQsQhhQQs

QQshhQQsQh

 

 
Therefore 









b
bb

b
bbb

a QQs

hQQs
h

)(

)(
                       (21) 
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when 0)( 
b

bb QQs . 

To find out when this condition is satisfied, using 
Eq. (15), (18), (19) and (20): 

 

 







 









b
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b
b

b
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b b
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b
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QQsQQs
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)()()sgn(

 

 
Hence: 


 


b
b

b
bbb

a Q

hQQs
h

)(
2                     (22) 

when 0
b

bQ . 

So when all mass flow rates are equal to zero, the 
mixing enthalpy ah  is indeterminate ( 0/0ah ). 

Although the indetermination occurs only at an 
isolated point (all mass flow rates equal to zero), it is 
not obvious to extend ah  in order to remove the sin-

gularity at zero (contrary to other functions with iso-
lated singularities such as xx /)sin( ). 

In particular, it is not sufficient to replace s  by ŝ  
(or in other words get rid of the upwind scheme by 
introducing diffusion in the flow reversing formula 
given by Eq. (17)) because then 









b
bb

b
bbb

a
QQs

hQQs
h

)ˆ(ˆ

)ˆ(ˆ

                   (23) 

with  

ab

b
b

Q
Q

:

ˆ


                               (24) 

 

The singularity still remains since 0)ˆ(ˆ 
b

bb QQs  

when all mass flow rates are equal to zero.  
However, noticing that  

)0,max()( bbb QQQs   

Eq. (21) may be written as 











0

0

b

b

Q
b

Q
bb

a Q

hQ

h  

Therefore, if one is not interested in the correct value 
of  ah  near zero flows, which is in general the case 

when diffusion is neglected, then as suggested in [3] 
one can replace bQ  by ),max( QQb  where Q  is a 

small positive mass flow rate. Then when all mass 

flow rates bQ  are below Q  ( QQb  ): 


b

b
a

a h
N

h
1

                           (25) 

where aN  is the number of neighboring volumes b  

of volume a , so the singularity is removed for zero 
flows.  

Noticing that yyxyxsyx  )()(),max( , 

one can even have a C  way  of removing the sin-
gularity by (1) considering the function  

xpp e
xs 


1

1
)(                          (26) 

by (2) replacing s  by ps  in the max function above 

yyxyxspyxsmoothMax p  )()(),,(  

and by (3) properly adjusting the value of p  wrt. 

Q . 

This solution will not be developed here any fur-
ther, as a full physical solution is sought. The reason 

is that replacing bQ  by Q  when QQb   for 

computing the mixing enthalpy violates the energy 
balance fundamental law, so requires a proper choice 
of Q  wrt. the problem at hand. 

As suggested in [3] there are also other ways to 
write smoothMax . 

Notice also that 5.0ˆ ss   and  ss  (see Eq. 

(12), (14) and (26). 
 

4 Removing the singularity at zero 
flows 

Diffusion is reinstalled in the energy balance equa-
tion. Then 

 
b

abQ )(0                           (27) 

  
b

ab abJabQh )()(0 :              (28) 

assuming without loss of generality that 0aW . 

Using Eq. (1) and (6): 
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 

2/:
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x

T
kAabJ







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
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
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










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Taking the derivative of Eq. (8) wrt. x  at 
2

L
x   

yields: 
)()()( 0 abJPrabJ e                 (29) 

with 
)()( :0 abab hhabJ                    (30) 

abP
ab Lc

kA

:

: 










                             (31) 

)(
1

:

abQP
ab

e 


                    (32) 












 

01

0
)( 22

xif

xif

ee

x

xr xx
                    (33) 

)(0 abJ   is the energy flux when 0)(  abQ . 

For easier computation )(xr  may be approximated 
by the Gaussian 

2033.0)( xexr 
                            (34) 

The plot below compares r  in red with r̂  in blue. 

 
Figure 5: plot of r̂  and r  

 
When all flows bQ are equal to zero, the energy bal-

ance equation writes 

 
b

abab
b

hhabJ )()(0 :0   

As the coefficients ab:  are always strictly positive 

( 0: ab ), when all flows are equal to zero the mix-

ing enthalpy ah  is defined and takes the value: 


 



b
ab

b
bab

a

h
h

:

:




                         (35) 

If all coefficients ab:  are equal, then ah  is the 

arithmetic mean (see also Eq. (25)) 


b

b
a

a h
N

h
1

                             (36) 

where aN  is the number of neighboring volumes b  

of volume a . 
As a conclusion to this chapter, when diffusion is 

taken into account, the energy balance equation is 
  

b
abab abQhhabQh )()()(0 :  (37) 

with 

ab
ab

abQrabQ :
:

)(
1

)( 
 








         (38) 

The terms )( abQ   are in general small but are 

always strictly positive and have the same physical 
unit as a mass flow rate (kg/s). So they never go to 
zero, even when all mass flow rates go to zero. They 
act therefore as small positive mass flow rates that 

remove naturally in a C way the singularity of the 
mixing enthalpy at zero flows.  

5 Benchmark of the proposed solu-
tion 

To evaluate the computing overhead of introducing 
diffusion to solve the singularity problem, the 
benchmark consists in comparing two alternatives 
for the static energy balance equation (see Eq. (28)): 

 Alternative 1: without diffusion, with or 
without upwind scheme. 

 Alternative 2:  with diffusion, with or with-
out upwind scheme. 

 
Without diffusion means that 

0)(  abJ  
With diffusion means that 

)()ˆ(ˆ)( : ababb hhQrabJ    

With upwind scheme means that 

abbbab hQshQsh  )()(:  

Without upwind scheme means that  

abbbab hQshQsh  )ˆ(ˆ)ˆ(ˆ:  
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)ˆ(ˆ bQr  and  )ˆ(ˆ bQs  are defined by Eq. (12), (24) 

and (34). 
The equations are implemented as a prototype in 

the ThermoSysPro library using the scheme shown 
in Figure 6. 
 

aa hP ,)( 1 abQ  )( 3 abQ 

)( 4 abQ 

33, bb hP
11, bb hP

44 , bb hP

22 , bb hP

)( 2 abQ 

 
Figure 6: grid scheme in ThermoSysPro 

 
The quantities ( aP , bP ) and ( ah , bh ) are com-

puted in the multi-port elements with the mass and 
energy balance equations. Multi-port elements 
represent the control volumes a  and b . For this rea-
son, they are also called ‘volumes’. The quantities 

)( abJ   and abh :  are also computed in the vo-

lumes. 
The quantities )( abQ   are computed in the 

two-port elements with the momentum balance equa-
tions. Two-port elements represent the interfaces 

ab :  between a  and b .  
The interface ab :  is oriented positively from the 

blue port to the red port of the two-port element that 
represents ab : . So the mass flow rate is positive 
when the fluid flows along the positive direction of 
the interface orientation, i.e. from the blue port to the 
red port. To reflect this sign convention for mass 
flow rates, the blue port is called ‘input port’, and the 
red port is called ‘output port’. 

The components are connected together via the 
input and output ports that correspond to Modelica 
connectors. Input and output connectors have the 
same structure. In order to handle diffusion, they are 
somewhat different from the usual fluid connectors 
used in Modelica fluid libraries, and in particular in 
the current distribution of the ThermoSysPro library. 
The meaning of the variables in the connector de-

pends on whether the connector is attached to a vo-
lume or to a two-port element. 

If the connector is attached to a two-port element 
representing the interface ab : : 
 
P Pressure aP  in volume a , or pressure bP  in 

volume b , depending on whether the connec-

tor is on the side of a  or on the side of b . 

Q Mass flow rate )( abQ   of the fluid going 

through interface ab : .  

h Specific enthalpy abh :  of the fluid going 

through interface ab : . 

h_vol_1 Specific enthalpy bh  or ah  of the fluid in 

volume b  or a  located on the side of the 
input port of the two-port element that 
represents ab : . 

h_vol_2 Specific enthalpy bh  or ah  of the fluid in 

volume b  or a  located on the side of the 
output port of the two-port element that 
represents ab : . 

 
If the connector is attached to a multi-port ele-

ment that represents volume b , and the connector is 
connected to the two-port element that represents 
interface ab : : 
 
P Pressure bP  of the fluid in volume b . 

Q Mass flow rate )( abQ   of the fluid going 

through interface ab : . 

h Specific enthalpy abh :  of the fluid going 

through interface ab : . 

h_vol_1 If the connector is an input port: specific en-

thalpy bh  of the fluid in the neighboring vo-

lume b  located in the direction of negative 
flow rates. 

If the connector is an output port: specific 

enthalpy ah  of the fluid in volume a . 

h_vol_2 If the connector is an input port: specific en-

thalpy ah  of the fluid in volume a . 

If the connector is an output port: specific 

enthalpy bh  of the fluid in the neighboring 

volume b  located in the direction of positive 
flow rates. 
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The purpose of h_vol_1 and h_vol_2 is to provide 

both ah  and bh  to volumes a  and b  even if they 

are separated by a line of connected two-port ele-
ments. 

When connecting together two connectors, the 
variables inside the connectors are made equal be-
cause they represent the same physical quantities. So 
connectors are used to assemble the model from the 
different components, and not to generate extra phys-
ical equations (such as balance equations for in-
stance). 

This scheme for distributing the equations be-
tween multi-port and two-port elements and connect-
ing them together enables to connect together several 
two-port elements without having to separate them 
by volumes. The connected line of two-port elements 
is then equivalent to a single two-port element. Also, 
there are no infinitesimally small volume elements 
implied between two connected two-port elements, 
so the connections do not generate the kind of singu-
larity dealt with in this paper. 

The test model is shown in Figure 7. 
 

 
Figure 7: test model 

 

A mixing volume (VolumeA1) is connected to two 
fluid sources (SourceQ1, SourceP1) and a fluid sink 
(SinkP1) via a pipe (Tube) and two control valves 
(Valve1 and Valve2). The test scenario consists in 
performing a flow reversal, and then setting all mass 
flow rates to zero. 
 
SourceQ1 The specific enthalpy is constant equal to 

1.e5 J/kg. 

The mass flow rate follows the following 
curve (kg/s vs. s). 

 

SourceP1 The specific enthalpy is constant equal to 
1.e5 J/kg. 

The pressure is constant equal to 3 bars. 

SinkP1 The temperature is constant equal to 320 K 

The pressure is constant equal to 1 bar. 

Valve1 The position varies from 100% to 0% in 2 
seconds starting from t = 1 s.  

Valve2 The position is constant equal to 100% 

 
Four simulation runs are performed: 

 Run 1.1: without diffusion, with upwind 
scheme 

 Run 1.2: without diffusion, without upwind 
scheme 

 Run 2.1: with diffusion, with upwind scheme 
 Run 2.2: with diffusion, without upwind 

scheme 
 

For each run are plotted: 
 The mass flow rates at each connected port 

of the mixing volume (3 curves) 
 The specific enthalpy inside the mixing vo-

lume (1 curve) 
 The specific enthalpies inside each source 

and sink (3 curves). 
 

Figure 8 gives the mass flow rates for all runs (no 
difference in results for all runs). 
 

 
Figure 8: mass flow rates for runs 1 and 2 
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Runs 1.1 and 1.2 
 

Figure 9 gives the specific enthalpies for run 1.1, and 
Figure 10 gives the specific enthalpies for run 1.2.  
 

 
Figure 9: specific enthalpies for run 1.1 

 

 
Figure 10: specific enthalpies for run 1.2  

 
For run 1.1, when all mass flow rates are set to zero 
(at t = 8 s), the specific enthalpy in the mixing vo-
lume keeps its last value prior to the zero mass flow 
rates condition, just as though there were some kind 
of memory holding this value when all mass flow 
rates become zero. This is probably an artifact due to 
the numerical methods used to solve the algebraic 
equations. The result is physically correct, but this 
looks as sheer luck as the theory predicts that the 
result is in fact mathematically undefined when dif-
fusion is neglected. 

To the contrary, for run 1.2, when all mass flow 
rates are set to zero (at t = 8 s), the specific enthalpy 
in the mixing volume continues to vary until it takes 
a seemingly final constant value. This is a false tran-
sient which is of course unphysical because, since 
the model is static, all values should stay constant 
when the boundary conditions are constant (after t = 
8 s). 

In both cases, the theory predicts that the mixing 
enthalpy can take any value when all mass flow rates 
are zero and diffusion is neglected, so the result is 
consistent with the theory. 
 
 
Runs 2.1 and 2.2 
 
Figure 11 gives the specific enthalpies for runs 2.1 
and 2.2 (no difference in results for both runs). 

 

 
Figure 11: specific enthalpies for runs 2.1 and 2.2 

 
When all mass flow rates are set to zero, the specific 
enthalpy in the mixing volume takes the value that 
corresponds to the thermal equilibrium between the 
mixing and the sources and sink it is connected with, 
which is a correct physical result. The transition to 
thermal equilibrium is sharp but continuous. 

The following table gives the computing times in 
seconds and the sizes of the non-linear systems after 
manipulation for each run with Dymola.  
 

Run CPU time Sizes of non-linear 
systems 

1.1 0.125 { 3, 1 } 
1.2 1.22 { 3, 1 } 
2.1 0.219 { 4 } 
2.2 0.313 { 7 } 

 
The conclusion from this experiment is that the 

best solution is to take into account diffusion in the 
energy balance equation, but still use the upwind 
scheme, i.e. neglect diffusion in the flow reversal 
equation. The overhead over the standard approxi-
mation of neglecting diffusion everywhere is 75%. 

More diverse experiments should be made in or-
der to decide whether it is better to take into account 
diffusion in the flow reversal formula or not, because 
avoiding the upwind scheme enables to remove the 
discontinuity due to the use of the step function. 

6 Conclusion 

Neglecting diffusion in thermal-hydraulics systems 
is a common approximation when dealing with large 
mass flow rates, as diffusion is only significant when 
mass flow rates are near zero. 

However, this approximation leads to undefined 
values for the mixing enthalpies when all mixing 
mass flow rates are equal to zero. This is due to the 
fact that convection, which is the only thermal phe-
nomena taken into account when diffusion is neg-
lected, vanishes when mass flow rates go to zero, so 
there is no physical phenomenon left to describe the 
thermal physical state inside the mixing volume. 

A physical solution for solving the zero-flow singularity in static thermal-hydraulics mixing models
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A rigorous mathematical and physical solution to 
this problem is to reinstall diffusion in the energy 
balance equation. This solution indeed removes the 
singularity for zero flows in a continuously differen-
tiable way, as theoretically demonstrated in this pa-
per. 

A prototype implementation has been made in the 
ThermoSysPro library for power plant modelling, 
developed by EDF. The introduction of diffusion 
into the library has an impact on the structure of 
connectors. 

The prototype has been tested on a small static 
model that features a mixing volume connected to 
fluid sources. The test scenario consists in perform-
ing a flow reversal, then bringing all flows to zero. 
The results are consistent with the theory developed 
in this paper. They also show that the upwind 
scheme, which is the equation for computing flow 
reversal that neglects diffusion, can be kept, as reins-
talling diffusion in the flow reversal equation as well 
does not make any difference in the computing re-
sults, but provokes a significant overhead in compu-
ting time. However, more numerical experiments 
should be made to confirm this last point. 

7 Notations 

aP : fluid pressure in volume a  

ah : fluid specific enthalpy in volume a  

au : fluid specific internal energy in volume a  

a : fluid density in volume a  

aV : volume of volume a  

aW : external energy brought to the volume a  

)( abQ  : mass flow rate of the fluid flowing from 

volume b  to volume a  
)( abT  : temperature gradient from volume b  

to volume a  

abh : : specific enthalpy of the fluid flowing from vo-

lume b  to volume a  

abpc :)( : specific heat capacity of the fluid flowing 

from volume b  to volume a  

abk : : diffusion coefficient at the interface between 

volumes b  and a  

abA : : area of the interface between volumes b  and 

a  

abL : : distance between the centers of volumes  b  

and a  

abG : : more generally, value of quantity G  at the 

interface between volumes b  and a  
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