
A new Implementation of the N-D Lookup Tables

Torsten Sommer Markus Andres Stephan Diehl
Modelon GmbH

Agnes-Pockels-Bogen 1
D-80992 Munich, Germany

torsten.sommer@modelon.com markus.andres@modelon.com stephan.diehl@modelon.com

Abstract

The HDF5Table library is an open-source solution
for the efficient handling, exchange and interpolating
access of typical data sets in system simulation. The
library consists of C-functions, python scripts and
examples and can be used with different applications
like Modelica or Simulink. Furthermore a compre-
hensive set of tools that allows the user to create,
migrate, edit, compare and manage the datasets is
available.

The application range covers data import from
measurements or other simulations, integration of
datasets in preprocessing routines, the usage of the
datasets in the simulation and the post processing of
simulation results. To eliminate a major source of
errors after data exchange between simulation tools
or different companies and to validate the datasets
each dataset can have a physical unit and quantity
attached to it. The table data can be easily accessed
with different methods for inter- and extrapolation.
To persist and exchange the data sets a subset of the
HDF5 standard is used. With the HDF5 API the data
access is fast for large files with many variables con-
taining millions of values and the datasets can be
opened in many other tools.
Keywords: HDF5; lookup tables; unit and quantity
safety; interpolation; extrapolation

1 Introduction

Lookup tables traditionally play a major role in
industrial simulations. They are used in a wide range
of applications where physical models or parameters
are not available or the evaluation of the existing
models is computationally too expensive. Real-time
simulations and hardware-in-the-loop setups are two
prominent examples. In these systems lookup tables
are used to re-play recorded stimulus from measure-
ments as well as pre- and post-processed data from

test benches. Another application is pre-calculated
lookup tables from long running system or finite el-
ement simulations.

A number of solutions exist for Modelica and
other simulation platforms some of which are dis-
cussed in detail in the following section. All of these
solutions suffer from different limitations and prob-
lems the proposed implementation together with a
set of supporting tools is trying to solve.

2 Existing Solutions

The Modelica Standard Library (MSL) provides a
number of tables in its Blocks Package. A general
separation is done based on the provided input func-
tionality. Here the prefix Combi shows the capability
of the table to either take direct user input in the
form of parameters from the Modelica environment
or to read data from files. In industrial applications
the second option is nearly solely used as it is more
convenient even for tables of modest size.

Table blocks for different needs are provided and
therefore are split into the Blocks.Sources and the
Blocks.Tables package. The separation into the
packages is done as the tables in the Sources package
implicitly define the single input of the table as the
simulation time. These tables are mainly used for the
playback of recorded continuous stimulus e.g. steer-
ing input or velocity signals over time. As these ta-
bles have a single input and are well suited for time
series simulation they are not in the focus of this pa-
per.

This leads to the Blocks.Tables package. These
tables are often used to cover effects that cannot be
modeled based on physics with reasonable effort or
performance. Therefore tables are used to approxi-
mate the behavior depending on a varying number of
inputs. Still for the tables in Blocks.Tables the num-
ber of inputs is limited to one or two which becomes
a limiting factor in many applications. Therefore
Dymola provides the DataFiles package that contains
the TableND which extends the number of inputs to

DOI
10.3384/ECP14096885

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

885

a theoretically unlimited amount. As indicated by the
missing prefix, data can only be read from .mat files.
The DataFiles Package contains a number of func-
tions that support the user with the generation of the
necessary .mat files. Additionally some Matlab
scripts are provided to support the data storing pro-
cess.

Now at first glance for Dymola users there is the
possibility to have capable tables in their simulations
using either the MSL’s Tables package or the Data-
Files package. Still there are a couple of limitations
to that which we want to point out now. The Ta-
bleND’s data format is limited to version 4 .mat files
which limits the names in the file to 19 characters
and – much more of interest here – limits the number
of possible dimensions stored in the files to two.
Therefore the multi-dimensional tables cannot be
stored in their natural format but have to be convert-
ed. This problem is overcome by generating three
vectors by convention named dim, grid and table.
The length of the vector dim equals the number of
dimensions of the table each entry indicating the
amount of scale values in that dimension. In the vari-
able “grid” the scales for all dimensions are stored
implying that the length of grid has to be equal to the
sum of the elements in dim. Finally in the table vari-
able finally all values of the multidimensional table
are stored in one vector. All of this makes it very
hard to interpret the values in the table without suita-
ble conversion scripts.

Another disadvantage of this solution is the dif-
ferent behavior of CombiTables and TableND when
it comes to extrapolation. Whereas the CombiTables
extrapolate linearly the TableND keeps values con-
stant when exiting the defined area. For version 3.2.1
of the MSL efforts have been completed to make the
implementation of the MSL tables open source and
to enhance their functionality. New features include
that outputs of tables can now be differentiated once,
and newer .mat File formats are supported [7]. Still
that does not have any influence on the limiting fac-
tors mentioned before, as this is only valid for the
tables contained in the MSL.

3 Goals of the new Implementation

The goal of the proposed implementation is to come
up with a library that provides a superset of the fea-
tures of the existing solutions that is entirely open
source and accompanied by comprehensive set of
tools to leverage its functionality and ease the transi-
tion from existing solutions. The scope of possible
applications for both tables and tooling goes beyond
Modelica models since the tables can be easily port-

ed to other simulation platforms (e.g. Simulink,
CarMaker) or integrated into custom C-based solu-
tions. This takes the concept of separation of model
and data to a higher level as data can be used inde-
pendently from the simulation tool.
Furthermore one of the basic concepts of Modelica,
namely unit and quantity safety is adapted for table-
based data. Every dataset regardless of its dimen-
sions can have a physical unit and quantity (and oth-
er attributes) attached to it which allows the table
block to validate the data upon loading and elimi-
nates a major source of errors that arises from in-
compatible data being used in the simulations.
Future versions of the library will also be able to
record signals from a simulation and provide support
for ‘compiled-in’ data which is especially useful for
platforms that do not have a file system or to protect
the intellectual property contained in the data.

4 Features

To provide a one-stop solution for all uses of table
based data the table block features different methods
to inter- and extrapolate the sampled data which are
briefly presented in the following sections.

4.1 Interpolation

Generally two major uses of tables in models can be
distinguished: the first is the playback of recorded
continuous stimulus e.g. steering input or discrete
data like bus events. Both types are usually one-
dimensional and have the time as abscissa.

The second major use case for tables is found in
models that cannot be physically modeled and thus
use measured data to approximate their behavior or
are too complex to be simulated e.g. in a real-time
context. These table-based models usually depend on
more than one parameter and thus require multi-
dimensional tables. A prominent example in which
both types of tables can be found are hardware-in-
the-loop test benches.

The HDF5Table block provides three interpola-
tion methods that can be configured on a per-
instance basis: ‘Hold’, ‘Linear’ and ‘Akima’.

‘Hold’ will simply return the previous value in
the respective dimension and can be used to play-
back time discrete data where interpolation does not
make sense e.g. the selected gear in a vehicle.

‘Linear’ interpolates linearly between the neigh-
boring sample points in each dimension.

‘Akima’ uses a spline based interpolation method
proposed by Akima [5] where the interpolated func-

A new Implementation of the N-D Lookup Tables

886 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096885

tion passes through the sample points and its first
derivative is continuous.

Figure 1 Interpolation Methods

This has a positive impact on the stability of models
that use the derivative in their calculations. Figure 1
shows the three interpolation methods applied to a
one-dimensional dataset with six equally spaced
sample points of a sine function.

4.2 Extrapolation

Five methods are provided for extrapolation:

• Hold
• Linear
• Loop
• PingPong
• None

Similar to the interpolation ‘Hold’ simply repeats

the last sample value in the respective dimension.
‘Linear’ uses the last two samples to linearly extrap-
olate. For the playback of time series it is often de-
sired to infinitely repeat a given set of samples.
‘Loop’ repeats the recorded signal using the selected
interpolation method.
The ‘PingPong’ method works similarly to the loop
method but instead of starting over it goes back and
forth along the respective axis. This method is espe-
cially useful for lookup tables used for devices that

have a symmetric characteristic field like electric
machines. To better understand this method consider
the following example of the loss characteristics of a
permanent magnet synchronous machine (PMSM)
given as the power losses versus rotational speed as
the abscissa and the torque as the ordinate. Three
different types of lookup tables are common for
PMSMs: first quadrant, first and second quadrant
and all four quadrants corresponding to the motor,
motor and generator and motor and generator for
positive and negative rotation directions. With the
‘PingPong’ method one table block can be used for
all three types of tables without conditional instantia-
tion or additional logic inside the model. Figure 2
shows the extrapolated curve of the five methods for
a one-dimensional dataset with four equally spaced
and linearly increasing samples.
The extrapolation method “None” disables extrapo-
lation and raises an error when requested value is
outside the range of the table.

Figure 2 Extrapolation Methods

Session 5E: Modelica Tools 3

DOI
10.3384/ECP14096885

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

887

5 HDF5 File Structure

In order to efficiently store and exchange the data for
the tables a subset of the HDF5 standard is used.
Every table is stored as n-dimensional dataset of type
Float64. The scales for each dimension are stored as
separate datasets. For every dimension one scale da-
taset is attached to the table dataset using the HDF5
dimension scales API [3].

To store metadata like the physical units and
quantities a set of attributes has been defined that is
evaluated when reading the datasets. The following
table lists the attribute names together with the re-
quired data type and an example value.

Attribute Name Type Example
QUANTITY String “AngularVelocity”
UNIT String “rad/s”
DISPLAY_UNIT String “1/min”

QUANTITY and UNIT denote the physical quantity
and unit of the stored data. DISPLAY_UNIT is the
unit that is used to display the values to the user e.g.
when editing them. The literals used to represent the
units and quantities are the same as in Modelica and
can be found in the Modelica.SIunits and Modeli-
ca.SIunits.Conversions.NonSIunits packages of the
MSL.

Scales must always be one-dimensional and
strictly monotonic increasing and there must be at
most one scale attached per dimension whose length
matches the extent of the dataset in the respective
dimension. For a three-dimensional dataset with ex-
tent 2×3×4 the scale for the second dimension must
have exactly three values.

Users may add custom attributes and datasets to
store additional metadata, documentation or results
and use groups [6] to structure the datasets.

6 Modelica

The HDF5Table Modelica library comes as a .mo
file that contains the blocks, functions and examples
together with the C header files and pre-compiled
object libraries for the table and HDF5 as a ready-to-
use package. The Modelica functions and blocks are
presented in detail in the following sections.

6.1 Functions

To directly read and write scalars, vectors and matri-
ces from and to HDF5 files the library includes the
following functions that are similar to the readMAT*

/ writeMAT* functions in the DataFiles package that
ships with Dymola:

• writeVector
• writeMatrix
• attachScale
• readScalar
• readScalarChecked
• readVector
• readVectorChecked
• readMatrix
• readMatrixChecked
• attachScale

The “checked” versions of the functions take the ex-
pected unit and quantity as an additional parameter
and return an error code if the parameters do not
match the unit or quantity stored in the loaded da-
taset.
The attachScale function attaches a dataset as the
scale for the dimension of another dataset. All func-
tions are realized as external C code that can be
linked into the model or be called directly using the
simulation tool as shown in the figure below.

Figure 3 attachScale Function Dialog

The library can also read / write higher dimensional
arrays (up to 32 dimensions). Entering higher dimen-
sional arrays however can be cumbersome, as e.g.
Dymola does not provide UI support for editing val-
ues with more than two dimensions.

6.2 Blocks

The core of the library is the NDTable block that
loads and interpolates the data during the simulation.
It takes the file name of the HDF5 file, the dataset

A new Implementation of the N-D Lookup Tables

888 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096885

name and optionally the expected units and quanti-
ties of the dataset and scales as input and returns the
inter- or extrapolated value for every time step. Fig-
ure 4 shows the parameters of the NDTable block
with all quantities and units set for a dataset that
holds the power losses of an electric machine as a
function of rotational speed, torque and source volt-
age.

Figure 4 Parameters of the NDTable block

The DatasetRecorder block takes the scales as pa-
rameters and sweeps successively over the volume
spanned by the scales by applying the actual scale
values to the vector output. When a rising edge is
detected on the trigger port it records the value on
the in-port and applies the next set of scale values to
the input until all samples in the volume have been
recorded. Using this block tables with a large num-
ber of sample points can be generated without the
overhead of restarting the simulation which can save
a considerable amount of time.

Figure 5 RecorderBlock Example Model

Figure 5 shows the RecordTable example model
where the DatasetRecorder block is connected to a
dummy model that has three in-ports and whose out-
put is recorded upon every rising flank of the trigger.

7 Matlab / Simulink

Matlab and Simulink are two of the most commonly
used simulation and scripting environments. There-
fore the HDF5Table library also includes a Simulink

S-Function and Matlab scripts that allow users to re-
use their existing datasets without changes on this
platform. The Simulink table block has the same in-
ter- and extrapolation methods as the Modelica li-
brary and the underlying S-Functions are based on
the same C-sources which can be a major advantage
when porting models to this platform that rely on the
specific behavior of the implementation. Just like the
Modelica library the Simulink library ships as a pre-
compiled shared library that can be instantly used in
Simulink.

8 Tooling

To leverage the tables in the simulation they are ac-
companied by a comprehensive set of tools that al-
low the user to create, migrate, edit, compare and
manage the datasets. All tools are included in an
Eclipse distribution that is used as an integration
platform but can also be obtained and used separate-
ly.

The tools include a Python library based on mat-
plotlib [8] and NumPy [9] to read, write, manipulate
and plot data that can be debugged and run directly
from within Eclipse using the PyDev environment
[10]. Python’s support for a large number of data
formats allows the user to write import and export
scripts for their existing data with minimal effort
based on the provided examples. With the included
Python scripts both the text based and binary data
files used by the Blocks.Tables and Datafiles blocks
can be converted to HDF5.

Figure 6 Python script with graphical UI

Figure 6 shows an example Python script with a
graphical user interface that allows the user to create
characteristic maps of electric machines for use with
the NDTable block and that can serve as a basis for
custom HDF5 generators or processors.

Session 5E: Modelica Tools 3

DOI
10.3384/ECP14096885

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

889

Furthermore an EMF [11] based editor is includ-
ed that allows the user to conveniently view, edit and
validate the data files. Finally the datasets can be
compared and merged with the included EMF com-
pare editor [12].

The figure below shows the HDF5 editor viewing
the content of a three-dimensional characteristic map
dataset with scales.

Figure 7 HDF5 Editor

In the editor values are displayed in “display units”
and can be conveniently entered as expressions like
“sin(pi/4)” to get the sine of a 45 degree angle or
“ones(2, 3)” to get a 2×3 matrix of ones. All opera-
tions performed in the editor like copy & paste,
move, delete etc. can be undone with the standard
shortcuts or menu items. Drag & drop is supported to
move datasets between groups and even between
files.

9 Future Work

Currently the library is developed in Visual Studio
2010 for Windows. It is planned to port the library to
the hardware and software platforms listed below.

Hardware Platforms:

• Windows 32 and 64 bit
• Linux 32 and 64 bit
• dSPACE SCALEXIO

• dSPACE DS1006

Compilers:

• Microsoft compilers (VC6 and ≥ VS2005
(Win32 and x64))

• MinGW (GCC 4.4.0 and GCC 4.7.2)
• Cygwin (GCC 4.3.0)
• GCC 4.x on Linux

We are also planning to further extend the tooling

and to include a comprehensive documentation and
examples that showcase common uses and best prac-
tices. A future version of the library will include ad-
ditional inter- and extrapolation methods (e.g.
boundary slope extrapolation for the Akima method)
and support for the Der() derivative of the interpolat-
ed values to reduce simulation time and improve ac-
curacy [1].

10 Conclusions

The implemented library and its extensions show
that most features of the existing tables in the MSL’s
Blocks.Tables and the DataFiles package can be
combined in a single table simplifying the applica-
tion for the user. Additionally the error-proneness of
the overall simulation process can be reduced sub-
stantially based on unit and quantity checks.
The use of open standards like HDF5 and Modelica
guarantee that this open-source implementation is
expandable and can be customized for different
needs including wider tool support. To enable fast
adaption of the presented library a set of tools is pro-
vided enabling the user to quickly generate new or
migrate existing datasets.

A new Implementation of the N-D Lookup Tables

890 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096885

References

[1] Modelica Language Specification Version
3.3, Section 12.7,
https://www.modelica.org/documents/Modeli
caSpec33.pdf

[2] Call for Quotation of an Open Source Im-
plementation of the MSL Table Interpolation
Blocks,
https://www.modelica.org/news_items/call-
texts-to-improve-modelica-2012/2012-12-20-
Call-for-quotation-for-MSL-
tables.pdf/at_download/file

[3] HDF5 Dimension Scale API Reference,
http://www.hdfgroup.org/HDF5/doc/HL/RM
_H5DS.html

[4] Proposal for a Standard Time Series File
Format in HDF5, http://www.bausch-
gall.de/ecp12076495_PfeifferBausch-
GallOtter.pdf

[5] "A new method of interpolation and smooth
curve fitting based on local procedures",
Journal of ACM 17, 4 (1970), 589-602

[6] HDF5 Group Interface,
http://www.hdfgroup.org/HDF5/doc/RM/RM
_H5G.html

[7] Modelica Newsletter by Martin Otter
https://www.modelica.org/publications/newsl
etters/2013-2#item227

[8] matplotlib, http://matplotlib.org/
[9] NumPy, http://www.numpy.org/
[10] PyDev, http://pydev.org/
[11] Eclipse Modeling Framework,

http://www.eclipse.org/modeling/emf/
[12] EMF Compare,

http://www.eclipse.org/emf/compare/

Session 5E: Modelica Tools 3

DOI
10.3384/ECP14096885

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

891

