
Remarks on the Implementation of the Modelica Standard Tables

Thomas Beutlich Gerd Kurzbach Uwe Schnabel
ITI GmbH

Schweriner Straße 1, 01067 Dresden, Germany
{beutlich, kurzbach, schnabel}@itisim.com

Abstract

This article reveals some implementation details re-
garding the C code of the revised table interpolation
blocks released with the Modelica Standard Library
(MSL) 3.2.1. The emphasis is placed on the unique
features of the CombiTimeTable which are the dis-
continuities by time events and the periodic extrapola-
tion. Basic information on the interpolation by Akima
splines and the available table array memory optimiza-
tion options are mentioned.

Keywords: univariate interpolation, bivariate inter-
polation, periodic extrapolation, time events, Akima
splines

1 Introduction

For many years there has been no (open source) im-
plementation of the table interpolation blocks of the
MSL. Thus, Modelica simulation tools either did not
support the table blocks or needed to provide a custom
implementation that could lead to different simulation
results. One objective of releasing a backward compat-
ible MSL 3.2.1 was to provide an open source imple-
mentation of the table blocks based on the Modelica
external object interface. This table implementation
was named Modelica Standard Tables and comprises
the following four blocks for univariate and bivariate
interpolation

• Modelica.Blocks.Sources.CombiTimeTable,

• Modelica.Blocks.Tables.CombiTable1D,

• Modelica.Blocks.Tables.CombiTable1Ds and

• Modelica.Blocks.Tables.CombiTable2D.

The C header and source files of the Modelica
Standard Tables are publicly available from https:

//svn.modelica.org/projects/Modelica/
trunk/Modelica/Resources/C-Sources. The C
interface functions all start with prefix Modelica-
StandardTables_. The constructors and destructors
of the external table objects have suffix _init and
_close, respectively. If the table data is to be read
from an ASCII text file or a MATLAB MAT-File, an
interface function with suffix _read is used, i.e. file
I/O is not part of the construction of the external table
object. The actual interpolation functions are labeled
by trailing _getValue and _getDerValue for the
interpolation function and the interpolated derivatives,
respectively.

2 CombiTimeTable

The block Modelica.Blocks.Sources.CombiTimeTable
is different from standard univariate interpolation
since discontinuities (by time events) and periodic ex-
trapolation are considered. For instance, periodic and
discontinuous signals like saw-tooth or square-wave
w.r.t. simulation time can be modeled in a very conve-
nient and compact way.

2.1 Time events

Time events always occur at the table boundaries (tmin

and tmax) of the sample points, i.e. if interpolation
switches to extrapolation.

• In case of linear interpolation, additional time
events can be modeled by repetition of sample
points in the table array. It is guaranteed that there
are no time events at interval boundaries with a
simple sample point only. Thus the time coordi-
nates are not required to be strictly increasing but
monotonically increasing.

• In case of interpolation by constant segments,
every interval boundary (defined by the sample

DOI
10.3384/ECP14096893

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

893



points) leads to a time event, whether or not
there is an actual discontinuity in the ordinate val-
ues. The time coordinates are not required to be
strictly increasing but monotonically increasing.
In fact, repeated sample points are not appropri-
ate for the interpolation result.

• Additional time events are not possible in case
of interpolation with Akima splines. The time
coordinates are required to be strictly increasing.
(Thus care must be taken when changing the in-
terpolation smoothness if there are repeated sam-
ple points.)

The static function isNearlyEqual from source file
ModelicaStandardTables is used to tell if two double-
precision floating-point numbers are (nearly) equal
with relative threshold _EPSILON (set to 10−10 by de-
fault).

The calculation of the next time event tE is per-
formed in the interface function ModelicaStandard-
Tables_CombiTimeTable_nextTimeEvent. For nu-
merical reasons related to the floating-point arithmetic
used, the current time t is incremented by a small frac-
tion of the time table length, that is _EPSILON ·(tmax−
tmin) > 0. It is guaranteed that tE is greater than the
current time t and that no time events are missed if
the distance between two consecutive time events is
greater than this numerical increment.

If no future time event is found _nextTimeEvent re-
turns DBL_MAX. Hence, care should be taken by a Mod-
elica simulation tool to avoid floating-point overruns
during the event handling.

For debugging purposes, time events can be traced
(by means of ModelicaFormatMessage) by defining
DEBUG_TIME_EVENTS where each message line corre-
sponds to one time event. For instance, linear inter-
polation and extrapolation of the 4×2 example time
table [0.25, 30; 0.5, 40; 0.5, 10; 0.75, 30] results in
three time events (Fig. 1).

0 0.25 0.5 0.75 1

20

40

Figure 1: Linear interpolation of time table [0.25, 30;
0.5, 40; 0.5, 10; 0.75, 30] results in three time events.

The four messages (including the initial event) are

At time 0.00000: 1. time event at 0.25000
At time 0.25000: 2. time event at 0.50000
At time 0.50000: 3. time event at 0.75000
No more time events for time > 0.75000

In order to return the correct function values at the time
events (i.e. during the event iterations), the interface
functions _getValue and _getDerValue require not
only the next event time but also its pre-value as input
arguments.

2.2 Periodic extrapolation

For tables with periodic extrapolation, the numerically
stable detection of periodic time events is rather tricky.

A first implementation was discarded as it turned out
that the periodic time events were not reliably detected
in all cases. The main reason is due to the IEEE 754
binary floating-point arithmetic where t and t − n ·T
cannot be used simultaneously to detect the exact loca-
tion of an event interval or periodic time event. Here,
t denotes the floating-point number (FPN) of the cur-
rent time and T = tmax − tmin the FPN of the period
of the table. Variable n is a signed integer and de-
notes the multiple of the period. Furthermore, let tE
be the FPN of the event time (to be detected) and ti
the FPN of the corresponding event interval bound-
ary time from the table. There are FPNs such that the
inequality t ≥ tE = ti + n ·T is true, i.e. indicates a
time event, but where a simple rearrangement of the
inequality to the form t−n ·T ≥ ti does not hold. This
illustrates the fact that floating-point operations cannot
be used to exactly evaluate floating-point comparisons,
and therefore cannot be used to reliably detect periodic
time events.

The final implementation is based on (nonnegative) in-
tegers

• nEventsPerPeriod, the number of time events
per period and

• eventInterval, the (discrete) event interval
marker.

During the very first call of function _nextTime-
Event, the number of time events per period is de-
termined from the time coordinates of the table ar-
ray. There is always a time event per period at the

Remarks on the Implementation of the Modelica Standard Tables

894 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096893



table boundary, thus nEventsPerPeriod ≥ 1. Fur-
thermore, the start and end indices of each of the so-
called event intervals are determined and stored in the
integer array intervals.

As an example, the 5×2 time table [0, 10; 0.25, 30;
0.5, 40; 0.5, 10; 0.75, 30] is considered.

• There are two time events per period in case of
linear interpolation. The indices of the event in-
tervals are [0, 2] and [3, 4], i.e. the first interval
ranges from time 0 to time 0.5 and the second in-
terval from 0.5 to 0.75 (Fig. 2).

0 0.25 0.5 0.75 1
10

20

30

40

Figure 2: Two time events per period

• There are three time events per period in case of
interpolation by constant segments. The indices
of the event intervals are [0, 1], [1, 2] and [3, 4].
Repeated sample points are ignored since their
ordinate values can never be taken by the inter-
polating function (Fig. 3)

0 0.25 0.5 0.75 1
10

20

30

40

Figure 3: Three time events per period

The event interval marker eventInterval uses one-
based indexing. It is properly initialized once in the
very first call of function _nextTimeEvent since in-
terpolation does not need to start in the first event in-
terval by default. Along with both integer variables
and the event intervals array, the initial offset time
tOffset = n ·T is determined and stored.

Each subsequent call of _nextTimeEvent now incre-
ments the event interval marker by one and resets it
to 1 once it overruns, i.e. gets greater than the num-
ber of time events per period. This can be derived
from the fact that the input variable (time) is usually
increasing (w.r.t. time). Then it is known that there
is exactly one time event per event interval. There is

an event interval correction implemented in functions
_getValue and _getDerValue that sets the time to
be interpolated to either the left or right event interval
value in case of floating-point inaccuracies. This im-
plementation guarantees that no time events are missed
and that the correct function values of the interpolating
function at the event interval boundaries are returned.

3 Interpolation by Akima splines

Hiroshi Akima’s original articles [1, 2] were used for
the implementation of the univariate and bivariate in-
terpolation by Akima splines. His reference imple-
mentation (in FORTRAN 77) was not used. Further-
more, the FORTRAN 90 code of SOSIE [3] from Lau-
rent Brodeau was studied for an efficient calculation of
the coefficients for bivariate splines.

3.1 Spline coefficients

There are different possibilities to calculate and store
the polynomial spline coefficients of the interpolating
function.

1. Pre-calculate all coefficients during the initializa-
tion and store them within the external table ob-
ject.

2. Calculate the coefficients whenever needed (and
possibly store only the last calculated set of co-
efficients if used for evaluating the partial deriva-
tives in the same simulation time step).

3. Allocate enough memory during initialization to
store all coefficients, calculate them whenever
needed and store them whenever calculated. The
advantage is that for very large tables where only
a few different data parts are accessed there will
be no superfluous calculation at all and initial-
ization time is short. The disadvantages are the
high memory usage and the unpredictable execu-
tion time of a simulation time step (as it is never
known if the calculated coefficients are already
available).

This implementation of the Modelica Standard Ta-
bles uses the first option where all required coeffi-
cients of the entire table array are calculated during
initialization in function spline1DInit (for univari-
ate Akima splines) and spline2DInit (for bivariate
Akima splines).

Session 5E: Modelica Tools 3

DOI
10.3384/ECP14096893

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

895



3.2 Differentiability

The current univariate Akima spline interpolation al-
ways uses non-periodic table boundary conditions
which may lead to a discontinuous interpolating func-
tion or derivative at the table boundaries for periodic
extrapolation with the CombiTimeTable (Fig. 4).

0 0.25 0.5 0.75 1
0

5

10

Figure 4: Periodic extrapolation of time table [0.25,
10; 0.5, 0; 0.75, 10] by Akima splines results in a in-
terpolating function that is not (continuously) differ-
entiable.

In all other cases it is guaranteed that the univariate or
bivariate Akima spline interpolating function is con-
tinuously differentiable everywhere, especially at the
table boundaries (Fig. 5).

0 0.25 0.5 0.75 1
0

20

40

60

Figure 5: The boundary slopes of the Akima splines
are used to linearly extrapolate the one-dimensional
table [0.25, 20; 0.5, 0; 0.75, 10].

4 Array memory optimizations

Advanced array memory optimization features are im-
plemented and explained below.

4.1 Shared table arrays

If multiple table objects refer to the same table array
of the same file, this table array is read and stored in
memory multiple times since external objects are mu-
tually independent by default. In order to avoid su-
perfluous file input access and to decrease the utilized
memory there is a C++ implementation of a global ta-
ble array management on top of the C implementation,

guarded by predefined macro __cplusplus. The C or
C++ compilation can be toggled by compiler flag -x
c and -x c++ for GCC or flag /TC and /TP for Mi-
crosoft Visual C++. In the case of a C++ compilation
an additional static variable of type TableShareMap
(using the std::map container from the STL) with ref-
erence counting is introduced. Write access of this
global variable tableShare (e.g. insertion or era-
sure of tables) is thread-safe, i.e. guarded by a crit-
ical section (on Windows platforms) or pthread mu-
tex (on Linux platforms) and implemented by struct
CriticalSectionHandler.

A table array update is usually not required and there-
fore not implemented. Shared arrays of spline coef-
ficients are also not implemented, i.e. each external
table object always calculates and locally stores the
spline coefficients it requires.

4.2 Shallow copy of table arrays

This optimization is only relevant if the table array is
defined within the simulation model, i.e. if it is known
at compile-time and not read from the file at simula-
tion run-time. The complete table array memory that
is passed from the simulation model to the constructor
(the _init function) of the external table object is al-
located and copied (“deep copy”). This is the safe de-
fault case as nothing can be assumed about the lifetime
of the table array of the simulation model. Thus the ta-
ble memory is (temporarily) held twice: locally within
the external table object and at the outside model. If
the outside table array is known to be constant and
to have a longer simulation lifetime than the external
table object, the deep array copy can be avoided by
defining NO_TABLE_COPY. In this case, the outside ta-
ble array memory is used within the external table ob-
ject (“shallow copy” of the passed array pointer).

5 Conclusions

An open source implementation of the table blocks

• Modelica.Blocks.Sources.CombiTimeTable

• Modelica.Blocks.Tables.CombiTable1D

• Modelica.Blocks.Tables.CombiTable1Ds

• Modelica.Blocks.Tables.CombiTable2D

Remarks on the Implementation of the Modelica Standard Tables

896 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096893



is available with the MSL 3.2.1 as of August 2013.
The Modelica code is provided under Modelica Li-
cense 2. The C/C++ code of files ModelicaStandard-
Tables and ModelicaMatIO [4] is provided under the
new BSD license. As a result, all parts of the MSL are
now available in a free implementation.

Additionally it should be mentioned that this imple-
mentation added new features to the table blocks.

• The new option ConstantSegments was added for
the Smoothness parameter.

• The new option NoExtrapolation was added for
the Extrapolation parameter.

• The table outputs can be differentiated once (with
exception of the potentially discontinuous Con-
stantSegments).

• All MATLAB MAT-File formats are supported
by an adapted library libmatio [4] (provided by
ModelicaMatIO header and source file). Whereas
MAT-File formats v4 and v6 are supported with-
out additional dependencies by libmatio, the v7
format requires the zlib [5] library and com-
pilation with preprocessor macro HAVE_ZLIB=1
and the v7.3 format requires the hdf5 [6] and
szip [7] libraries and compilation with preproces-
sor macro HAVE_HDF5=1.

• The support of tables provided as static C ar-
rays in the user header file usertab.h was revised.
This is relevant for real-time systems without a
file system and where the table data is known at
compile-time.

Last but not least, 120 test models in Modelica-
Test.Tables with reference results have been created.

6 Acknowledgement

The presented work was paid for by the Modelica As-
sociation.

Grateful acknowledgements go to

• Martin Otter for the first implementation (from
1997 till 2001) of the table interpolation blocks
and for constructive discussions on the improve-
ment of the new implementation,

• Hans Olsson and Martin Sjölund for valuable ad-
vice on the improvement of the implementation,

• Christopher C. Hulbert for sharing a MAT-File C
library and providing a patch of Mat_VarRead-
DataLinear [4],

• David Zaslavsky for initiating an interp2d li-
brary compatible with the GNU Scientific Li-
brary (GSL) [8],

• John C. Beatty for sharing a simple utility to con-
catenate multiple C source files into a single C
source file [9] that was used to merge header
and source files of [4] to single files Modelica-
MatIO.h and ModelicaMatIO.c,

• Laurent Brodeau for sharing a bivariate Akima al-
gorithm (in FORTRAN 90) [3].

References

[1] Hiroshi Akima. A new method of interpolation
and smooth curve fitting based on local proce-
dures. J. ACM, 17(4):589–602, October 1970.

[2] Hiroshi Akima. A method of bivariate interpo-
lation and smooth surface fitting based on local
procedures. Commun. ACM, 17(1):18–20, Jan-
uary 1974.

[3] Laurent Brodeau. SOSIE is Only a Surface
Interpolation Environment. http://sosie.
sourceforge.net.

[4] Christopher C. Hulbert. MAT File I/O library
version 1.5.2. http://matio.sourceforge.
net.

[5] Jean-Loup Gailly and Mark Adler. A gen-
eral purpose compression library version 1.2.8.
http://zlib.net.

[6] The HDF Group. Hierarchical data format ver-
sion 5. http://www.hdfgroup.org/HDF5.

[7] The HDF Group. Science data lossless com-
pression library version 2.1. http://www.
hdfgroup.org/doc_resource/SZIP.

[8] David Zaslavsky. A 2D interpolation library
compatible with GSL. https://github.com/
diazona/interp2d.

[9] John C. Beatty. A very simple inclusion proces-
sor. https://www.student.cs.uwaterloo.
ca/~cs241/cLibs/mergeCsource.

Session 5E: Modelica Tools 3

DOI
10.3384/ECP14096893

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

897


